
Standard Loop Transformations

Louis-Noël Pouchet

CS & ECE
Colorado State University

February 23, 2020

PPoPP’20 Tutorial



Basics on Loop Transformations: PPoPP’20

Some Reference

Most of the material from this section is covered in:
Advanced Compilation for High Performance Computing Randy Allen
and Ken Kennedy, Morgan Kaufmann

CSU 2



Basics on Loop Transformations: PPoPP’20

Some Key Properties

Definition (Program equivalence)

Two computations are equivalent if given the same input they produce
identical values for the output variables at the time output statements are
executed and the output statements are executed in the same order.

Definition (Reordering transformation)

A reordering transformation is any program transformation that changes the
order of execution in the code without adding or deleting any execution of any
statement.

Definition (Legality of reordering transformations)

A reordering transformation preserves a dependence if it preserves the
relative execution order of the source and sink of that dependence. Any
reordering transformation that preserves every dependence in a program
preserves the meaning of that program.

CSU 3



Basics on Loop Transformations: PPoPP’20

Example

Example (dgemm original)
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

for (k = 0; k < nk; ++k)
S2: C[i][j] += alpha * A[i][k] * B[k][j];

CSU 4



Basics on Loop Transformations: PPoPP’20

Example

Example (dgemm incorrect)
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

for (k = 0; k < nk; ++k)
S2: C[i][j] += alpha * A[i][k] * B[k][j];

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

Question: Why is this code incorrect?

CSU 4



Basics on Loop Transformations: PPoPP’20

Data Dependence

Definition

Two statements R and S, with R coming before S in the instruction stream
can be reordered freely if:
I use(S)∩def (R) = /0 (flow dependence otherwise)
I use(R)∩def (S) = /0 (anti dependence otherwise)
I def (R)∩def (S) = /0 (output dependence otherwise)

Example
A = B * C;
D = A * E + F; //(flow on A)
D = B * C; //(output on D)
B = F * C; //(anti on B)

CSU 5



Basics on Loop Transformations: PPoPP’20

Control Dependence

Definition

A statement S is in control dependence with a statement R if S is guarded by
R

Example
R: if (x == 2);
S: D = A * E + F;
T: F = G * H;

CSU 6



Basics on Loop Transformations: PPoPP’20

Data Dependence

Definition (Bernstein conditions)

Two operations are in dependence if they access the same memory location,
and one of these access is a write.

Classification:
I flow dependence (Read-after-Write – RAW)
I anti dependence (Write-after-Read – WAR)
I output dependence (Write-after-Write – RAW)

CSU 7



Basics on Loop Transformations: PPoPP’20

A First Parallelization Approach

I If two statements have no data/control dependence, then they can be
reordered freely

I Parallelization is a reordering transformation

I Naive algorithm: detect independent statements, and parallelize
consecutive sets of independent operations

CSU 8



Basics on Loop Transformations: PPoPP’20

Example

Example (input code)
A = B * C;
F = G * H;
U = F * C;

CSU 9



Basics on Loop Transformations: PPoPP’20

Example

Example (Valid transformation)
F = G * H;
U = F * C;
A = B * C;

CSU 9



Basics on Loop Transformations: PPoPP’20

Example

Example (Parallel code)
finish {
async {

F = G * H;
U = F * C;

}
async { A = B * C; }

}

CSU 9



Basics on Loop Transformations: PPoPP’20

Returning to DGEMM

Example (dgemm original)
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

for (k = 0; k < nk; ++k)
S2: C[i][j] += alpha * A[i][k] * B[k][j];

According to our definition, this code is sequential!

CSU 10



Basics on Loop Transformations: PPoPP’20

Data dependences in loops

I Intuition: distinguish each memory cell accessed by an array
I C→ C(i, j)

I Intuition: distinguish each dynamic instance of the statements
I S1→ S1(i, j)

I Intuition: apply Bernstein conditions between statement instances,
looking at the particular memory address accessed each time.
I defS1(i, j)∩useS2(i, j,k) for a flow dependence
I only instances meeting this property are in dependence, others are not!

More on this later :-)

CSU 11



Basics on Loop Transformations: PPoPP’20

Catalogue of loop transformations

I loop permutation (a.k.a. interchange)
I loop distribution (a.k.a. fission)
I loop fusion (a.k.a. merging)
I loop peeling
I loop shifting
I loop unrolling
I loop strip-mining
I loop unroll-and-jam
I loop tiling (a.k.a. blocking)
I Index-set splitting
I ...
I loop parallelization
I loop vectorization
I ...

CSU 12



Basics on Loop Transformations: PPoPP’20

Loop Permutation

Example (original)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

Example (permute(i,j))

for (j = 0; j < nj; j++)
for (i = 0; i < ni; i++)

S1: C[i][j] = 0;

This transformation may be illegal

CSU 13



Basics on Loop Transformations: PPoPP’20

Loop Distribution

Example (original)

for (i = 0; i < ni; i++)
S1: C[i] = 0;
S2: D[i] = 0;

Example (distribute(S1,S2))

for (i = 0; i < ni; i++)
S1: C[i] = 0;

for (i = 0; i < ni; i++)
S2: D[i] = 0;

This transformation may be illegal

CSU 14



Basics on Loop Transformations: PPoPP’20

Loop Fusion

Example (original)

for (i = 0; i < ni; i++)
S1: C[i] = 0;

for (i = 0; i < ni; i++)
S2: D[i] = 0;

Example (fuse(S1,S2))

for (i = 0; i < ni; i++)
S1: C[i] = 0;
S2: D[i] = 0;

This transformation may be illegal

CSU 15



Basics on Loop Transformations: PPoPP’20

Loop Shifting

Example (original)

for (i = 0; i < ni; i++)
S1: C[i] = 0;
S2: D[i] = 0;

Example (shift(S2,1))

S1: C[0] = 0;
for (i = 1; i < ni; i++)

S1: C[i] = 0;
S2: D[i-1] = 0;
S2: D[ni-1] = 0;

This transformation may be illegal

CSU 16



Basics on Loop Transformations: PPoPP’20

Loop Unrolling

Example (original)

for (i = 0; i < ni; i++)
S1: C[i] = 0;

Example (unroll(i, 2))

for (i = 0; i < ni; i += 2) {
S1: C[i] = 0;
S1: C[i+1] = 0;

}

This transformation is always legal

CSU 17



Basics on Loop Transformations: PPoPP’20

Loop Stripmining

Example (original)

for (i = 0; i < ni; i++)
S1: C[i] = 0;

Example (stripmine(i, 4))

for (i = 0; i < ni; i += 4)
for (ii = i; ii < i + 4; ii++)

S1: C[ii] = 0;

This transformation is always legal

CSU 18



Basics on Loop Transformations: PPoPP’20

Loop Unroll-and-Jam

Example (original)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

Example (uaj(i, j, 2×2))

for (i = 0; i < ni; i += 2)
for (j = 0; j < nj; j += 2) {

S1: C[i][j] = 0;
S1: C[i][j+1] = 0;
S1: C[i+1][j] = 0;
S1: C[i+1][j+1] = 0;

}

This transformation may be illegal

CSU 19



Basics on Loop Transformations: PPoPP’20

Loop Tiling

Example (original)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

Example (tile(i, j, 2×2))

for (i = 0; i < ni; i += 2)
for (j = 0; j < nj; j += 2)
for (ii = i; ii < i + 2; ii++)
for (jj = j; jj < j + 2; jj++)

S1: C[ii][jj] = 0;

This transformation may be illegal

CSU 20



Basics on Loop Transformations: PPoPP’20

Remarks

I Be careful about matching loop bounds and divisibility by the stride
I Ex: for tiling, the good loop bound for ii is ii < min(ni, i+2)

I Fusion/distribution on non-matching loop bounds is properly defined in
the polyhedral model (using min/max for the loop bounds)

I Transformations can be composed in sequence
I Example for dgemm: fuse(S1,S2);tile(i,j,32,32)

CSU 21



Basics on Loop Transformations: PPoPP’20

Loop Parallelization (OpenMP)

Example (original)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

Example (omp(i))

#pragma omp parallel for private(j)
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

This transformation may be illegal

CSU 22



Basics on Loop Transformations: PPoPP’20

Loop Vectorization

Example (original)

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++)

S1: C[i][j] = 0;

Example (vectorize(j))

for (i = 0; i < ni; i++)
for (j = 0; j < nj; j += 4)

S1: C[i][j:0-3] = [0:3];

CSU 23



Basics on Loop Transformations: PPoPP’20

Concluding Remarks

I Determining the legality of a loop transformation requires data
dependence anlysis

I Some transformations are composition of other, basic ones
I Need to effectively compose the transformations
I Search space is infinite

I Applying loop transformations can be challenging
I non-matching loop bounds
I control dependences, gotos, ...
I imperfectly nested loops

I Current compiler framework are limited (work on subset of programs)

CSU 24


	Basics on Loop Transformations

