Polyhedral Transformation Framework

Louis-Noël Pouchet

CS \& ECE
Colorado State University

February 23, 2020

PPoPP'20 Tutorial

Polyhedral Program Representation

Example: DGEMM

Example (dgemm)

```
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
    for (j = 0; j < nj; j++) {
        C[i][j] *= beta;
        for (k = 0; k < nk; ++k)
            C[i][j] += alpha * A[i][k] * B[k][j];
        }
```

This code has:

- imperfectly nested loops
- multiple statements
- parametric loop bounds

Granularity of Program Representation

DGEMM has:

- 3 loops
- For loops in the code, while loops
- Control-flow graph analysis
- 2 (syntactic) statements
- Input source code?
- Basic block?
- ASM instructions?
- S 1 is executed ni $\times \mathrm{nj}$ times
- dynamic instances of the statement
- Does not (necessarily) correspond to reality!

Some Observations

Reasoning at the loop/statement level:

- Some loop transformation may be very difficult to implement
- How to fuse loops with different loop bounds?
- How to permute triangular loops?
- How to unroll-and-jam triangular loops?
- How to apply time-tiling?
- Statements may operate on the same array while being independent

Some Motivations for Polyhedral Transformations

- Known problem: scheduling of task graph
- Obvious limitations: task graph is not finite / size depends on problem / effective code generation almost impossible
- Alternative approach: use loop transformations
- solve all above limitation
- BUT the problem is to find a sequence that implements the order we want
- AND also how to apply/compose them
- Desired features:
- ability to reason at the instance level (as for task graph scheduling)
- ability to easily apply/compose loop transformations

The Polyhedral Model

Motivating Example [1/2]

Example

```
for (i = 0; i <= 1; ++i)
    for (j = 0; j <= 2; ++j)
    A[i][j] = i * j;
```

Program execution:
1: $A[0][0]=0$ * 0 ;
2: $A[0][1]=0$ * 1;
3: $A[0][2]=0$ * 2;
4: $A[1][0]=1$ * 0 ;
5: A[1][1] = 1 * 1;
6: A[1][2] = 1 * 2;

Motivating Example [2/2]

A few observations:

- Statement is executed 6 times
- There is a different values for i, j associated to these 6 instances
- There is an order on them (the execution order)

A rough analogy: polyhedral compilation is about (statically) scheduling tasks, where tasks are statement instances, or operations

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

```
for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...
```

$\mathcal{D}_{S 1}=\left[\begin{array}{rrrr}\mathbf{1} & \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ -1 & 0 & 1 & 0 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -1 & -1 & 1 & 2\end{array}\right] \cdot\left(\begin{array}{c}i \\ j \\ n \\ 1\end{array}\right) \geq \overrightarrow{0}$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and \vec{p}

$$
f_{\mathrm{s}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
$$

for ($i=0 ; i<n ;++i)\{$
. $s[i]=0$;
. for ($j=0 ; j<n ;++j)$
. . s[i] = s[i]+a[i][j]*x[j];
\}

$$
\begin{aligned}
& f_{\mathbf{a}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right) \\
& f_{\mathbf{x}}\left(\overrightarrow{x_{S 2}}\right)=\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{c}
\overrightarrow{x_{S 2}} \\
n \\
1
\end{array}\right)
\end{aligned}
$$

Polyhedral Representation of Programs

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\overrightarrow{x_{S}}$ and \vec{p}
- Data dependence between S1 and S2: a subset of the Cartesian product of $\mathcal{D}_{S 1}$ and $\mathcal{D}_{S 2}$ (exact analysis)

```
for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;
}
```


Program Transformations

What Can Be Modeled?

Exact vs. approximate representation:

- Exact representation of iteration domains
- Static control flow
- Affine loop bounds (includes min/max/integer division)
- Affine conditionals (conjunction/disjunction)
- Approximate representation of iteration domains
- Use affine over-approximations, predicate statement executions
- Full-function support

Key Intuition

- Programs are represented with geometric shapes
- Transforming a program is about modifying those shapes
- rotation, skewing, stretching, ...
- But we need here to assume some order to scan points

Affine Transformations


```
do i = 1, 2
do j = 1, 3
```

```
do i' = 1, 3
    do }\mp@subsup{j}{}{\prime}=1,
    S(i=j', j=\mp@subsup{i}{}{\prime})
```


Affine Transformations

$$
\begin{gathered}
\text { do } i=1,2 \\
\text { do } j=1,3 \\
s(i, j)
\end{gathered}
$$

```
do i' = -1, -2, -1
    do }\mp@subsup{j}{}{\prime}=1,
    S(i=3-\mp@subsup{i}{}{\prime},j=\mp@subsup{j}{}{\prime})
```


Affine Transformations

Coumpound Transformation		
The transformation matrix is the composition of an interchange and reversal		
J_{4}		$\wedge^{\text {j }}$
$3-3{ }_{1}$ (6)		3
2 - 2 (5		(6) (5) (4) -2
1-(1) (4)		(3) (2) (1) 1
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & i\end{array}$	\Longrightarrow	$\begin{array}{cccccc}-3 & -2-1 & 0 & 1 & 2 & i\end{array}$
$\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$	$\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\binom{i}{j}$	$\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]\binom{i^{\prime}}{j^{\prime}}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
(a) original polyhedron $A \vec{x}+\vec{a} \geq \overrightarrow{0}$	(b) transformation function $\vec{y}=T \vec{x}$	(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

```
do i = 1, 2
do }j=1,
    S(i,j)
```

```
do j' = -1, -3, -1
    do i' = 1, 2
    S(i=4-j',j=\mp@subsup{i}{}{\prime})
```


Affine Transformations

Coumpound Transformation		
The transformation matrix is the composition of an interchange and reversal		
J_{4}		$\wedge^{\text {j }}$
$3-3{ }_{1}$ (6)		3
2 - 2 (5		(6) (5) (4) -2
1-(1) (4)		(3) (2) (1) 1
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & i\end{array}$	\Longrightarrow	$\begin{array}{cccccc}-3 & -2-1 & 0 & 1 & 2 & i\end{array}$
$\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$	$\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]\binom{i}{j}$	$\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]\binom{i^{\prime}}{j^{\prime}}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
(a) original polyhedron $A \vec{x}+\vec{a} \geq \overrightarrow{0}$	(b) transformation function $\vec{y}=T \vec{x}$	(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

```
do i = 1, 2
do }j=1,
    S(i,j)
```

```
do j' = -1, -3, -1
    do i' = 1, 2
    S(i=4-j',j=\mp@subsup{i}{}{\prime})
```


So, What is This Matrix?

- We know how to generate code for arbitrary matrices with integer coefficients
- Arbitrary number of rows (but fixed number of columns)
- Arbitrary value for the coefficients
- Through code generation, the number of dynamic instances is preserved
- But this is not true for the transformed polyhedra!

Some classification:

- The matrix is unimodular
- The matrix is full rank and invertible
- The matrix is full rank
- The matrix has only integral coefficients
- The matrix has rational coefficients

A Reverse History Perspective

(1) CLooG: arbitrary matrix
(2) Affine Mappings
(Unimodular framework
(9) SARE
© SURE

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Original Schedule

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Program Transformations

Distribute loops

- All instances of S1 are executed before the first S2 instance

Program Transformations

Distribute loops + Interchange loops for S2

- The outer-most loop for $\mathbf{S} \mathbf{2}$ becomes k

Program Transformations

Illegal schedule

- All instances of S1 are executed after the last S2 instance

Program Transformations

A legal schedule		
```for (i = 0; i < n; ++i) for (j = 0; j < n; ++j){ S1: C[i][j] = 0; for (k = 0; k < n; ++k)```	$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ \mathbf{1}\end{array}\right)$	```for (i = n; i < 2*n; ++i) for (j = 0; j < n; ++j) C[i][j] = 0; for (k= n+1; k<= 2*n; ++k)```
S2: C[i][j] +=A[i][k]*	$\Theta^{S 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{ccccc}0 & 0 & 1 & \mathbf{1} & \mathbf{1} \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathbf{n} \\ \mathbf{1}\end{array}\right)$	```for (j = 0; j < n; ++j) for (i = 0; i < n; ++i) C[i][j] += A[i][k-n-1]* B[k-n-1][j];```

- Delay the S2 instances
- Constraints must be expressed between $\Theta^{S 1}$ and $\Theta^{S 2}$


## Program Transformations

## Implicit fine-grain parallelism



- Less (linear) rows than loop depth $\rightarrow$ remaining dimensions are parallel


## Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lllllllll}
i & j & i & j & k & n & n & 1 & 1
\end{array}\right)^{T}
\end{aligned}
$$

## Program Transformations

Representing a schedule

$$
\begin{aligned}
& \Theta \cdot \vec{x}=\left(\begin{array}{lllllllll}
\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
0 & 0 & \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0}
\end{array}\right) \cdot\left(\begin{array}{cccccccc}
\mathbf{i} & \mathbf{j} & \mathbf{i} & \mathbf{j} & \mathbf{k} & \mathrm{n} & \mathrm{n} & \mathbf{1} \\
\vec{l} & \mathbf{1} \\
& & & \vec{p} & \mathbf{p}
\end{array}\right)^{T}
\end{aligned}
$$

## Program Transformations

Representing a schedule

```
for (i = 0; i < n; ++i)
 for (j = 0; j < n; ++j){
S1: C[i][j] = 0;
 for (k = 0; k < n; ++k)
S2: C[i][j] += A[i][k]*
 B[k][j];
 }
```

$\Theta^{S 1} \cdot \vec{x}_{S 1}=\left(\begin{array}{llll}\mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$
$\Theta^{S 2} \cdot \vec{x}_{S 2}=\left(\begin{array}{ccccc}\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & \mathbf{0}\end{array}\right) \cdot\left(\begin{array}{c}\mathbf{i} \\ \mathbf{j} \\ \mathbf{k} \\ \mathrm{n} \\ \mathbf{1}\end{array}\right)$

```
for (i = n; i < 2*n; ++i)
```

    for ( \(\mathrm{j}=0\); \(\mathrm{j}<\mathrm{n}\); ++j)
    C[i][j] = 0;
    for ( $k=n+1$; $k<=2 \star n$; $++k$ )
for ( $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n}$; +j )
for (i = 0; $i<n$; ++i)
C[i][j] +=A[i][k-n-1]*
B[k-n-1][j];

	Transformation	Description
$\vec{l}$	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
$\vec{p}$	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting
$c$	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

## Fusion in the Polyhedral Model



```
for (i = 0; i <= N; ++i) \{
 Blue(i);
 Red(i);
\}
```

Perfectly aligned fusion

## Fusion in the Polyhedral Model



Fusion with shift of 1
Not all instances are fused

## Fusion in the Polyhedral Model



```
for (i = 0; i < P; ++i)
 Blue(i);
for (i = P; i <= N; ++i) {
 Blue(i);
 Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
 Red(i-P);
```

Fusion with parametric shift of $P$
Automatic generation of prolog/epilog code

## Fusion in the Polyhedral Model



```
for (i = 0; i < P; ++i)
 Blue(i);
for (i = P; i <= N; ++i) {
 Blue(i);
 Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
 Red(i-P);
```

Many other transformations may be required to enable fusion: interchange, skewing, etc.

## Scheduling Matrix

## Definition (Affine multidimensional schedule)

Given a statement $S$, an affine schedule $\Theta^{S}$ of dimension $m$ is an affine form on the $d$ outer loop iterators $\vec{x}_{S}$ and the $p$ global parameters $\vec{n}$.
$\Theta^{S} \in \mathbb{Z}^{m \times(d+p+1)}$ can be written as:

$$
\Theta^{S}\left(\vec{x}_{S}\right)=\left(\begin{array}{ccc}
\theta_{1,1} & \ldots & \theta_{1, d+p+1} \\
\vdots & & \vdots \\
\theta_{m, 1} & \ldots & \theta_{m, d+p+1}
\end{array}\right) \cdot\left(\begin{array}{c}
\vec{x}_{S} \\
\vec{n} \\
1
\end{array}\right)
$$

$\Theta_{k}^{S}$ denotes the $\mathrm{k}^{\text {th }}$ row of $\Theta^{S}$.

Definition (Bounded affine multidimensional schedule)
$\Theta^{S}$ is a bounded schedule if $\theta_{i, j}^{S} \in[x, y]$ with $x, y \in \mathbb{Z}$

## Another Representation

One can separate coefficients of $\Theta$ into:
(1) The iterator coefficients
(2) The parameter coefficients
(3) The constant coefficients

One can also enforce the schedule dimension to be $2 \mathrm{~d}+1$.

- A $d$-dimensional square matrix for the linear part
- represents composition of interchange/skewing/slowing
- A $d \times n$ matrix for the parametric part
- represents (parametric) shift
- A $d+1$ vector for the scalar offset
- represents statement interleaving
- See URUK for instance


## Computing the 2d+1 Identity Schedule

do $\mathrm{i}=1, \mathrm{n}$	
$S_{1}$	$\begin{aligned} & x=a(i, i) \\ & \text { do } j=1, i-1 \end{aligned}$
$S_{2}$	$\mathrm{x}=\mathrm{x}-\mathrm{a}(\mathrm{i}, \mathrm{j}) * * 2$
$S_{3}$	$\begin{aligned} & p(i)=1.0 / \operatorname{sqrt}(x) \\ & \text { do } j=i+1, n \end{aligned}$
$S_{4}$	$\begin{aligned} & x=a(i, j) \\ & \text { do } k=1, i-1 \end{aligned}$
$S_{5}$ $S_{6}$	$\begin{aligned} & x=x-a(j, k) * a(i, k) \\ & a(j, i)=x * p(i) \end{aligned}$



## Transformation Catalogue [1/2]

Syntax	Effect
UNIMODULAR $(P, \mathrm{U})$	$\forall S \in \mathcal{S}_{\text {cop }} \mid P \sqsubseteq \beta^{S}, \mathrm{~A}^{S} \leftarrow \mathrm{U} . \mathrm{A}^{S} ; \Gamma^{S} \leftarrow \mathrm{U} . \Gamma^{S}$
SHIFT ( $P$,M)	$\forall S \in \mathcal{S}_{\text {cop }} \mid P \sqsubseteq \beta^{S}, \Gamma^{S} \leftarrow \Gamma^{S}+\mathrm{M}$
CutDom $(P, c)$	$\forall S \in S_{\text {cop }} \mid P \sqsubseteq \beta^{S}, \Lambda^{S} \leftarrow \operatorname{AddRow}\left(\Lambda^{S}, 0, c / \operatorname{gcd}\left(c_{1}, \ldots, c_{d^{S}+d_{\mathrm{lv}}}+d_{\mathrm{gp}}+1\right)\right)$
$\operatorname{Extend}(P, \ell, c)$	$\forall S \in \mathcal{S}_{\mathrm{cop}} \mid P \sqsubseteq \beta^{S},\left\{\begin{array}{l}d^{S} \leftarrow d^{S}+1 ; \Lambda^{S} \leftarrow \operatorname{AddCol}\left(\Lambda^{S}, c, 0\right) ; \\ \beta^{S} \leftarrow \operatorname{AddRow}\left(\beta^{S}, \ell, 0\right) ; \\ \mathrm{A}^{S} \leftarrow \operatorname{AddRow}\left(\operatorname{AddCol}\left(\mathrm{~A}^{S}, c, 0\right), \ell, \mathbf{1}_{\ell}\right) ; \\ \Gamma^{S} \leftarrow \operatorname{AddRow}\left(\Gamma^{S}, \ell, 0\right) ; \\ \forall(\mathrm{A}, \mathrm{F}) \in \mathcal{L}_{\mathrm{hs}}^{S} \cup \mathcal{R}_{\mathrm{hs}}^{S}, \mathrm{~F} \leftarrow \operatorname{AddRow}(\mathrm{~F}, \ell, 0)\end{array}\right.$
AddLocalVar $(P)$	$\begin{aligned} & \forall S \in S_{\mathrm{cop}} \mid P \sqsubseteq \beta^{S}, d_{\mathrm{lv}}^{S} \leftarrow d_{\mathrm{lv}}^{S}+1 ; \Lambda^{S} \leftarrow \operatorname{AddCol}\left(\Lambda^{S}, d^{S}+1,0\right) ; \\ & \forall(\mathrm{A}, \mathrm{~F}) \in \mathcal{L}_{\mathrm{hs}}^{S} \cup \mathcal{R}_{\mathrm{hs}}^{S}, \mathrm{~F} \leftarrow \operatorname{AddCol}\left(\mathrm{~F}, d^{S}+1,0\right) \\ & \hline \end{aligned}$
Privatize(A, $\ell$ )	$\forall S \in S_{\text {cop }}, \forall(\mathrm{A}, \mathrm{F}) \in \mathcal{L}_{\text {hs }}^{S} \cup \mathcal{R}_{\text {hs }}{ }^{\text {, }}$, $\mathrm{F} \leftarrow \operatorname{AddRow}\left(\mathrm{F}, \ell, \mathbf{1}_{\ell}\right)$
CONTRACT(A, $\ell$ )	$\forall S \in S_{\text {cop }}, \forall(\mathrm{A}, \mathrm{F}) \in \mathcal{L}_{\text {hs }}^{S} \cup \mathcal{R}_{\text {his }}{ }^{\text {S }}$, $\mathrm{F} \leftarrow \operatorname{RemRow}(\mathrm{F}, \ell)$
$\operatorname{Fusion}(P, o)$	$\begin{aligned} & b=\max \left\{\beta_{\operatorname{dim}(P)+1}^{S} \mid(P, o) \sqsubseteq \beta^{S}\right\}+1 \\ & \operatorname{Move}((P, o+1),(P, o+1), b) ; \operatorname{Move}(P,(P, o+1),-1) \end{aligned}$
$\overline{\operatorname{FISSION}(P, o, b)}$	$\operatorname{Move}(P,(P, o, b), 1) ; \operatorname{Move}((P, o+1),(P, o+1),-b)$
$\operatorname{Motion}(P, T)$	$\begin{aligned} & \text { if } \operatorname{dim}(P)+1=\operatorname{dim}(T) \text { then } b=\max \left\{\beta_{\operatorname{dim}(P)}^{S} \mid P \sqsubseteq \beta^{S}\right\}+1 \text { else } b=1 \\ & \operatorname{Move}(\operatorname{pfx}(T, \operatorname{dim}(T)-1), T, b) \\ & \forall S \in S_{\text {cop }} \mid P \sqsubseteq \beta^{S}, \beta^{S} \leftarrow \beta^{S}+T-\operatorname{pfx}(P, \operatorname{dim}(T)) \\ & \text { Move }(P, P,-1) \end{aligned}$

## Transformation Catalogue [2/2]

Syntax	Effect	Comments
Interchange $(P, o)$	$\left\{\begin{array}{l} \forall S \in S_{\mathrm{cop}} \mid P \sqsubseteq \beta^{S}, \\ \left\{\begin{array}{l} \mathrm{U}=\mathrm{I}_{d^{S}}-\mathbf{1}_{o, o}-\mathbf{1}_{o+1, o+1}+\mathbf{1}_{o, o+1}+\mathbf{1}_{o+1, o} \\ \operatorname{UNIMODULAR}\left(\beta^{S}, \mathrm{U}\right) \end{array}\right. \end{array}\right.$	swap rows $o$ and $o+1$
$\operatorname{SKEW}(P, \ell, c, s)$	$\left\{\begin{array}{l} \forall S \in S_{\mathrm{cop}} \mid P \sqsubseteq \beta^{S}, \\ \left\{\begin{array}{l} \mathrm{U}=\mathrm{I}_{d^{S}}+s \cdot \mathbf{1}_{\ell, c} ; \\ \mathrm{UNIMODULAR}\left(\beta^{S}, \mathrm{U}\right) \end{array}\right. \end{array}\right.$	add the skew factor
REVERSE $(P, o)$	$\begin{aligned} & \forall S \in \mathcal{S}_{\text {cop }} \mid P \sqsubseteq \beta^{S}, \\ & \left\{\begin{array}{l} \mathrm{U}=\mathrm{I}_{d^{S}}-2 \cdot \mathbf{1}_{o, o} ; \\ \mathrm{UNIMODULAR}\left(\beta^{S}, \mathrm{U}\right) \end{array}\right. \end{aligned}$	put a -1 in (0,0)
STRIPMINE $(P, k)$		insert intermediate loop constant column   $k \cdot \mathbf{i}_{c} \leq \mathbf{i}_{c+1}$   $\mathbf{i}_{c+1} \leq k \cdot \mathbf{i}_{c}+k-1$
$\overline{\operatorname{TILE}\left(P, o, k_{1}, k_{2}\right)}$	$\begin{aligned} & \forall S \in \mathcal{S}_{\text {cop }} \mid(P, o) \sqsubseteq \beta^{s}, \\ & \left\{\begin{array}{l} \text { STRIPMINE }\left((P, o), k_{2}\right) ; \\ \text { STRIPMINE }\left(P, k_{1}\right) ; \\ \text { InTERCHANGE }((P, 0), \operatorname{dim}(P)) \end{array}\right. \end{aligned}$	strip outer loop strip inner loop interchange

## Some Final Observations

Some classical pitfalls

- The number of rows of $\Theta$ does not correspond to actual parallel levels
- Scalar rows vs. linear rows
- Linear independence
- Parametric shift for domains without parametric bound

