
Polyhedral Transformation Framework

Louis-Noël Pouchet

CS & ECE
Colorado State University

February 23, 2020

PPoPP’20 Tutorial

: PPoPP’20

Polyhedral Program Representation

CSU 2

Polyhedral Program Representation: Basics PPoPP’20

Example: DGEMM

Example (dgemm)
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++) {

S1: C[i][j] *= beta;
for (k = 0; k < nk; ++k)

S2: C[i][j] += alpha * A[i][k] * B[k][j];
}

This code has:
I imperfectly nested loops
I multiple statements
I parametric loop bounds

CSU 3

Polyhedral Program Representation: Basics PPoPP’20

Granularity of Program Representation

DGEMM has:
I 3 loops

I For loops in the code, while loops
I Control-flow graph analysis

I 2 (syntactic) statements
I Input source code?
I Basic block?
I ASM instructions?

I S1 is executed ni × nj times
I dynamic instances of the statement
I Does not (necessarily) correspond to reality!

CSU 4

Polyhedral Program Representation: Basics PPoPP’20

Some Observations

Reasoning at the loop/statement level:
I Some loop transformation may be very difficult to implement

I How to fuse loops with different loop bounds?
I How to permute triangular loops?
I How to unroll-and-jam triangular loops?
I How to apply time-tiling?
I ...

I Statements may operate on the same array while being independent

CSU 5

Polyhedral Program Representation: Basics PPoPP’20

Some Motivations for Polyhedral Transformations

I Known problem: scheduling of task graph
I Obvious limitations: task graph is not finite / size depends on problem /

effective code generation almost impossible
I Alternative approach: use loop transformations

I solve all above limitation
I BUT the problem is to find a sequence that implements the order we want
I AND also how to apply/compose them

I Desired features:
I ability to reason at the instance level (as for task graph scheduling)
I ability to easily apply/compose loop transformations

CSU 6

The Polyhedral Model: PPoPP’20

The Polyhedral Model

CSU 7

The Polyhedral Model: PPoPP’20

Motivating Example [1/2]

Example

for (i = 0; i <= 1; ++i)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;

Program execution:

1: A[0][0] = 0 * 0;
2: A[0][1] = 0 * 1;
3: A[0][2] = 0 * 2;
4: A[1][0] = 1 * 0;
5: A[1][1] = 1 * 1;
6: A[1][2] = 1 * 2;

CSU 8

The Polyhedral Model: PPoPP’20

Motivating Example [2/2]

A few observations:
I Statement is executed 6 times
I There is a different values for i, j associated to these 6 instances
I There is an order on them (the execution order)

A rough analogy: polyhedral compilation is about (statically)
scheduling tasks, where tasks are statement instances, or operations

CSU 9

The Polyhedral Model: PPoPP’20

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)

CSU 10

The Polyhedral Model: PPoPP’20

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1
−1 0 1 0

0 1 0 −1
−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0

CSU 10

The Polyhedral Model: PPoPP’20

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs(~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa(~xS2) =

[
1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx(~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1


CSU 10

The Polyhedral Model: PPoPP’20

Polyhedral Representation of Programs

Static Control Parts
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1
−1 0 0 3

0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations

CSU 10

The Polyhedral Model: PPoPP’20

Program Transformations

CSU 11

The Polyhedral Model: Modeling Programs PPoPP’20

What Can Be Modeled?

Exact vs. approximate representation:
I Exact representation of iteration domains

I Static control flow
I Affine loop bounds (includes min/max/integer division)
I Affine conditionals (conjunction/disjunction)

I Approximate representation of iteration domains
I Use affine over-approximations, predicate statement executions
I Full-function support

CSU 12

Program Transformation: PPoPP’20

Key Intuition

I Programs are represented with geometric shapes

I Transforming a program is about modifying those shapes
I rotation, skewing, stretching, ...

I But we need here to assume some order to scan points

CSU 13

Program Transformation: PPoPP’20

Affine Transformations

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

1 2 3

4 5 6

0 1 2 3 4 5 6 i’0
1
2
3

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[0 1

1 0

](i
j

)  0 1
0 −1
1 0
−1 0

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = 1, 3
do j’ = 1, 2

S(i=j’,j=i’)

CSU 14

Program Transformation: PPoPP’20

Affine Transformations

Reversal Transformation
The transformation matrix is the identity with one diagonal element replaced by −1.

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

5

4

6 1

2

3

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[−1 0

0 1

](i
j

) −1 0
1 0
0 1
0 −1

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do i’ = -1, -2, -1
do j’ = 1, 3

S(i=3-i’,j=j’)

CSU 14

Program Transformation: PPoPP’20

Affine Transformations

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[0 −1

1 0

](i
j

)  0 −1
0 1
1 0
−1 0

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

CSU 14

Program Transformation: PPoPP’20

Affine Transformations

Coumpound Transformation
The transformation matrix is the composition of an interchange and reversal

1

2

3

5

6

4

1 2 3 4 5 6

1
2
3

i

j

3

6

2

5

1

4

1
2
3

0 1 2−3 −2 −1 i’

j’

=⇒

 1 0
−1 0

0 1
0 −1

(i
j

)
+

−1
2
−1

3

≥~0
(

i′
j′

)
=
[0 −1

1 0

](i
j

)  0 −1
0 1
1 0
−1 0

(i′
j′

)
+

−1
2
−1

3

≥~0

(a) original polyhedron (b) transformation function (c) target polyhedron

A~x+~a≥~0 ~y = T~x (AT−1)~y+~a≥~0

do i = 1, 2
do j = 1, 3

S(i,j)

do j’ = -1, -3, -1
do i’ = 1, 2

S(i=4-j’,j=i’)

CSU 14

Program Transformation: PPoPP’20

So, What is This Matrix?

I We know how to generate code for arbitrary matrices with integer
coefficients
I Arbitrary number of rows (but fixed number of columns)
I Arbitrary value for the coefficients

I Through code generation, the number of dynamic instances is preserved
I But this is not true for the transformed polyhedra!

Some classification:
I The matrix is unimodular
I The matrix is full rank and invertible
I The matrix is full rank
I The matrix has only integral coefficients
I The matrix has rational coefficients

CSU 15

Program Transformation: PPoPP’20

A Reverse History Perspective

1 CLooG: arbitrary matrix
2 Affine Mappings
3 Unimodular framework
4 SARE
5 SURE

CSU 16

Program Transformation: PPoPP’20

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Original Schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){
C[i][j] = 0;
for (k = 0; k < n; ++k)
C[i][j] += A[i][k]*

B[k][j];

}

I Represent Static Control Parts (control flow and dependences must be
statically computable)

I Use code generator (e.g. CLooG) to generate C code from polyhedral
representation (provided iteration domains + schedules)

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Distribute loops

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
for (k = 0; k < n; ++k)
C[i-n][j] += A[i-n][k]*

B[k][j];

I All instances of S1 are executed before the first S2 instance

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Distribute loops + Interchange loops for S2

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 0 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I The outer-most loop for S2 becomes k

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Illegal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (k = 0; k < n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k]*

B[k][j];
for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i-n][j] = 0;

I All instances of S1 are executed after the last S2 instance

CSU 17

Program Transformation: PPoPP’20

Program Transformations

A legal schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(
1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

I Delay the S2 instances
I Constraints must be expressed between ΘS1 and ΘS2

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Implicit fine-grain parallelism

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 = (1 0 0 0) .

 i
j
n
1



Θ
S2.~xS2 = (0 0 1 1 0) .


i
j
k
n
1



for (i = 0; i < n; ++i)
pfor (j = 0; j < n; ++j)
C[i][j] = 0;

for (k = n; k < 2*n; ++k)
pfor (j = 0; j < n; ++j)

pfor (i = 0; i < n; ++i)
C[i][j] += A[i][k-n]*

B[k-n][j];

I Less (linear) rows than loop depth→ remaining dimensions are
parallel

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

~p

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Θ.~x =

(1 0 0 0 1 1 1 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

)
.

~p

(i j i j k n n 1 1)T

0 0

~ı

0 0 0

~p

0

c

0

CSU 17

Program Transformation: PPoPP’20

Program Transformations

Representing a schedule

for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j){

S1: C[i][j] = 0;
for (k = 0; k < n; ++k)

S2: C[i][j] += A[i][k]*
B[k][j];

}

Θ
S1.~xS1 =

(1 0 1 0
0 1 0 0

)
.

 i
j
n
1



Θ
S2.~xS2 =

(
0 0 1 1 1
0 1 0 0 0
1 0 0 0 0

)
.


i
j
k
n
1



for (i = n; i < 2*n; ++i)
for (j = 0; j < n; ++j)
C[i][j] = 0;

for (k= n+1; k<= 2*n; ++k)
for (j = 0; j < n; ++j)
for (i = 0; i < n; ++i)
C[i][j] += A[i][k-n-1]*

B[k-n-1][j];

Transformation Description

~ı
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation

~p fusion Fuses two loops, a.k.a. jamming
distribution Splits a single loop nest into many, a.k.a. fission or splitting

c peeling Extracts one iteration of a given loop
shifting Allows to reorder loops

CSU 17

Program Transformation: PPoPP’20

Fusion in the Polyhedral Model

0 N

for (N
Blue

for (i = 0; i <= N; ++i) {
Blue(i);
Red(i);

}

for (N
Red

Perfectly aligned fusion

CSU 18

Program Transformation: PPoPP’20

Fusion in the Polyhedral Model

0 N N+11

for

Blue(0);
for (i = 1; i <= N; ++i) {
Blue(i);
Red(i-1);

}
Red(N);

for (N

Fusion with shift of 1
Not all instances are fused

CSU 18

Program Transformation: PPoPP’20

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Fusion with parametric shift of P
Automatic generation of prolog/epilog code

CSU 18

Program Transformation: PPoPP’20

Fusion in the Polyhedral Model

P0 N N+P

for (i = 0; i < P; ++i)
Blue(i);

for (i = P; i <= N; ++i) {
Blue(i);
Red(i-P);

}
for (i = N+1; i <= N+P; ++i)

Red(i-P);

Many other transformations may be required to enable
fusion: interchange, skewing, etc.

CSU 18

Program Transformation: PPoPP’20

Scheduling Matrix

Definition (Affine multidimensional schedule)

Given a statement S, an affine schedule ΘS of dimension m is an affine form
on the d outer loop iterators~xS and the p global parameters~n.
ΘS ∈ Zm×(d+p+1) can be written as:

Θ
S(~xS) =

θ1,1 . . . θ1,d+p+1
...

...
θm,1 . . . θm,d+p+1

 .

~xS
~n
1


ΘS

k denotes the kth row of ΘS.

Definition (Bounded affine multidimensional schedule)

ΘS is a bounded schedule if θS
i,j ∈ [x,y] with x,y ∈ Z

CSU 19

Program Transformation: PPoPP’20

Another Representation

One can separate coefficients of Θ into:
1 The iterator coefficients
2 The parameter coefficients
3 The constant coefficients

One can also enforce the schedule dimension to be 2d+1.
I A d-dimensional square matrix for the linear part

I represents composition of interchange/skewing/slowing

I A d×n matrix for the parametric part
I represents (parametric) shift

I A d+1 vector for the scalar offset
I represents statement interleaving

I See URUK for instance

CSU 20

Program Transformation: PPoPP’20

Computing the 2d+1 Identity Schedule

S1

S2

S3

S4

S5

S6

θS("xS) = TS"xS + "tS ,

"xS TS "tS

θS1("xS1) = (0, i, 0) θS2("xS2) = (0, i, 1, j, 0) θS3("xS3) = (0, i, 2)

0

0
0

0

0 1 2

1 2

3

 i

 j j

 k

S1

S2

S3

S4

S5

S6

S1

S2

S3

S4

S5

S6

θS("xS) = TS"xS + "tS ,

"xS TS "tS

θS1("xS1) = (0, i, 0) θS2("xS2) = (0, i, 1, j, 0) θS3("xS3) = (0, i, 2)

0

0
0

0

0 1 2

1 2

3

 i

 j j

 k

S1

S2

S3

S4

S5

S6

CSU 21

Program Transformation: PPoPP’20

Transformation Catalogue [1/2]

28 Girbal, Vasilache et al.

CUTDOM constrains a domain with an additional inequality, in the
form of a vector c with the same dimension as a row of matrix Λ.

EXTEND inserts a new intermediate loop level at depth !, initially re-
stricted to a single iteration. This new iterator will be used in following
code transformations.

ADDLOCALVAR insert a fresh local variable to the domain and to the
access functions. This local variable is typically used by CUTDOM.

PRIVATIZE and CONTRACT implement basic forms of array privati-
zation and contraction, respectively, considering dimension ! of the array.
Privatization needs an additional parameter s, the size of the additional di-
mension; s is required to update the array declaration (it cannot be inferred
in general, some references may not be affine). These primitives are simple
examples updating the data layout and array access functions.

This table is not complete (e.g., it lacks index-set splitting and data-
layout transformations), but it demonstrates the expressiveness of the uni-
fied representation.

Syntax Effect
UNIMODULAR(P,U) ∀S ∈ Scop | P# βS,AS ← U.AS; ΓS← U.ΓS

SHIFT(P,M) ∀S ∈ Scop | P# βS,ΓS ← ΓS +M
CUTDOM(P,c) ∀S ∈ Scop | P# βS,ΛS ← AddRow

(
ΛS,0,c/gcd(c1, . . . ,cdS+dSlv+dgp+1

)
)

EXTEND(P,!,c) ∀S ∈ Scop | P# βS,






dS← dS +1; ΛS← AddCol(ΛS,c,0);
βS← AddRow(βS,!,0);
AS← AddRow(AddCol(AS,c,0),!,1!);
ΓS← AddRow(ΓS,!,0);
∀(A,F) ∈ LS

hs ∪R S
hs,F← AddRow(F,!,0)

ADDLOCALVAR(P) ∀S ∈ Scop | P# βS,dSlv ← dSlv+1; ΛS← AddCol(ΛS,dS +1,0);
∀(A,F) ∈ LS

hs∪R S
hs,F← AddCol(F,dS +1,0)

PRIVATIZE(A,!) ∀S ∈ Scop,∀(A,F) ∈ LS
hs ∪R S

hs,F← AddRow(F,!,1!)
CONTRACT(A,!) ∀S ∈ Scop,∀(A,F) ∈ LS

hs ∪R S
hs,F← RemRow(F,!)

FUSION(P,o) b=max{βSdim(P)+1 | (P,o)# βS}+1
Move((P,o+1),(P,o+1),b); Move(P,(P,o+1),−1)

FISSION(P,o,b) Move(P,(P,o,b),1); Move((P,o+1),(P,o+1),−b)
MOTION(P,T) if dim(P)+1= dim(T) then b=max{βSdim(P) | P# βS}+1 else b= 1

Move(pfx(T,dim(T)−1),T,b)
∀S ∈ Scop | P# βS,βS ← βS +T −pfx(P,dim(T))
Move(P,P,−1)

Fig. 18. Some classical transformation primitives

Primitives operate on program representation while maintaining the
structure of the polyhedral components (the invariants). Despite their fa-
miliar names, the primitives’ practical outcome on the program represen-
tation is widely extended compared to their syntactic counterparts. Indeed,
transformation primitives like fusion or interchange apply to sets of state-

CSU 22

Program Transformation: PPoPP’20

Transformation Catalogue [2/2]
30 Girbal, Vasilache et al.

Syntax Effect Comments

INTERCHANGE(P,o) ∀S ∈ Scop | P# βS,
swap rows o and o+1

{
U= IdS−1o,o−1o+1,o+1+1o,o+1+1o+1,o;
UNIMODULAR(βS,U)

SKEW(P,!,c,s) ∀S ∈ Scop | P# βS,
add the skew factor

{
U= IdS + s ·1!,c;
UNIMODULAR(βS,U)

REVERSE(P,o) ∀S ∈ Scop | P# βS,
put a -1 in (o,o)

{
U= IdS −2 ·1o,o;
UNIMODULAR(βS,U)

STRIPMINE(P,k) ∀S ∈ Scop | P# βS,




c= dim(P);
EXTEND(βS,c,c);
u= dS +dSlv+dgp+1;
CUTDOM(βS,−k ·1c +(ASc+1,Γ

S
c+1));

CUTDOM(βS,k ·1c − (ASc+1,Γ
S
c+1)+(k−1)1u)

insert intermediate loop
constant column
k · ic ≤ ic+1
ic+1 ≤ k · ic + k−1

TILE(P,o,k1 ,k2) ∀S ∈ Scop | (P,o)# βS,




STRIPMINE((P,o),k2);
STRIPMINE(P,k1);
INTERCHANGE((P,0),dim(P))

strip outer loop
strip inner loop
interchange

Fig. 19. Composition of transformation primitives

3.2. Implementing Loop Unrolling

In the context of code optimization, one of the most important transforma-
tions is loop unrolling. A naive implementation of unrolling with statement
duplications may result in severe complexity overhead for further transfor-
mations and for the code generation algorithm (its separation algorithm
is exponential in the number of statements, in the worst case). Instead
of implementing loop unrolling in the intermediate representation of our
framework, we delay it to the code generation phase and perform full loop
unrolling in a lazy way. This strategy is fully implemented in the code gen-
eration phase and is triggered by annotations (carrying depth information)
of the statements whose surrounding loops need to be unrolled; unrolling
occurs in the separation algorithm of the code generator (22) when all the
statements being printed out are marked for unrolling at the current depth.

Practically, in most cases, loop unrolling by a factor b an be imple-
mented as a combination of strip-mining (by a factor b) and full unrolling
(6). Strip-mining itself may be implemented in several ways in a polyhedral
setting. Following our earlier work in (7) and calling b the strip-mining fac-
tor, we choose to model a strip-mined loop by dividing the iteration span of
the outer loop by b instead of leaving the bounds unchanged and inserting
a non-unit stride b, see Figure 20.

CSU 23

Program Transformation: PPoPP’20

Some Final Observations

Some classical pitfalls
I The number of rows of Θ does not correspond to actual parallel levels
I Scalar rows vs. linear rows
I Linear independence
I Parametric shift for domains without parametric bound
I ...

CSU 24

	Polyhedral Program Representation
	Basics

	The Polyhedral Model
	Modeling Programs

	Program Transformation

