Polyhedral Transformation Framework

Louis-Noël Pouchet

CS & ECE Colorado State University

February 23, 2020

PPoPP'20 Tutorial

Polyhedral Program Representation

1

Example: DGEMM

Example (dgemm)

```
/* C := alpha*A*B + beta*C */
for (i = 0; i < ni; i++)
for (j = 0; j < nj; j++) {
S1: C[i][j] *= beta;
for (k = 0; k < nk; ++k)
S2: C[i][j] += alpha * A[i][k] * B[k][j];
}</pre>
```

This code has:

- imperfectly nested loops
- multiple statements
- parametric loop bounds

Granularity of Program Representation

DGEMM has:

- 3 loops
 - For loops in the code, while loops
 - Control-flow graph analysis
- 2 (syntactic) statements
 - Input source code?
 - Basic block?
 - ASM instructions?
- S1 is executed ni × nj times
 - dynamic instances of the statement
 - Does not (necessarily) correspond to reality!

Some Observations

Reasoning at the loop/statement level:

- Some loop transformation may be very difficult to implement
 - How to fuse loops with different loop bounds?
 - How to permute triangular loops?
 - How to unroll-and-jam triangular loops?
 - How to apply time-tiling?
 - ▶ ...

Statements may operate on the same array while being independent

Some Motivations for Polyhedral Transformations

- Known problem: scheduling of task graph
- Obvious limitations: task graph is not finite / size depends on problem / effective code generation almost impossible
- Alternative approach: use loop transformations
 - solve all above limitation
 - BUT the problem is to find a sequence that implements the order we want
 - AND also how to apply/compose them
- Desired features:
 - ability to reason at the instance level (as for task graph scheduling)
 - ability to easily apply/compose loop transformations

The Polyhedral Model

Motivating Example [1/2]

Example

```
for (i = 0; i <= 1; ++i)
for (j = 0; j <= 2; ++j)
A[i][j] = i * j;</pre>
```

Program execution:

```
1: A[0][0] = 0 * 0;

2: A[0][1] = 0 * 1;

3: A[0][2] = 0 * 2;

4: A[1][0] = 1 * 0;

5: A[1][1] = 1 * 1;

6: A[1][2] = 1 * 2;
```

Motivating Example [2/2]

A few observations:

- Statement is executed 6 times
- There is a different values for i, j associated to these 6 instances
- There is an order on them (the execution order)

A rough analogy: polyhedral compilation is about (statically) scheduling tasks, where tasks are statement <u>instances</u>, or operations

Static Control Parts

Loops have affine control only (over-approximation otherwise)

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_s}$ and \vec{p}

$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

for (i=0; i. s[i] = 0;
. for (j=0; j. . s[i] = s[i]+a[i][j]*x[j];
}
$$f_{s}(\vec{x_{52}}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

$$f_{x}(\vec{x_{52}}) = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \cdot \begin{pmatrix} \vec{x_{52}} \\ n \\ 1 \end{pmatrix}$$

Static Control Parts

- Loops have affine control only (over-approximation otherwise)
- Iteration domain: represented as integer polyhedra
- Memory accesses: static references, represented as affine functions of $\vec{x_S}$ and \vec{p}
- ► Data dependence between S1 and S2: a subset of the Cartesian product of D_{S1} and D_{S2} (exact analysis)

What Can Be Modeled?

Exact vs. approximate representation:

- Exact representation of iteration domains
 - Static control flow
 - Affine loop bounds (includes min/max/integer division)
 - Affine conditionals (conjunction/disjunction)

Approximate representation of iteration domains

- Use affine over-approximations, predicate statement executions
- Full-function support

Key Intuition

- Programs are represented with geometric shapes
- Transforming a program is about modifying those shapes
 rotation, skewing, stretching, ...
- But we need here to assume some order to scan points

So, What is This Matrix?

- We know how to generate code for arbitrary matrices with integer coefficients
 - Arbitrary number of rows (but fixed number of columns)
 - Arbitrary value for the coefficients
- Through code generation, the number of dynamic instances is preserved
- But this is not true for the transformed polyhedra!

Some classification:

- The matrix is unimodular
- The matrix is full rank and invertible
- The matrix is full rank
- The matrix has only integral coefficients
- The matrix has rational coefficients

A Reverse History Perspective

- CLooG: arbitrary matrix
- Affine Mappings
- Onimodular framework
- SARE
- SURE

Original Schedule

$$\begin{array}{c} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{find } \\ \text{S1: } C[\mathbf{i}][\mathbf{j}] = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \text{S2: } C[\mathbf{i}][\mathbf{j}] \ += \mathbf{A}[\mathbf{i}][\mathbf{k}] \\ \mathbb{B}[\mathbf{k}][\mathbf{j}]; \\ \end{array} \\ \end{array} \\ \left\{ \begin{array}{l} \Theta^{S1}_{\vec{x}_{S1}} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{n} \\ 1 \end{pmatrix} \\ \end{array} \right. \\ \left\{ \begin{array}{l} \text{for } (\mathbf{i} = 0; \ \mathbf{i} < \mathbf{n}; \ ++\mathbf{i}) \\ \text{for } (\mathbf{j} = 0; \ \mathbf{j} < \mathbf{n}; \ ++\mathbf{j}) \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ C[\mathbf{i}][\mathbf{j}] \ = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ C[\mathbf{i}][\mathbf{j}] \ = 0; \\ \text{for } (\mathbf{k} = 0; \ \mathbf{k} < \mathbf{n}; \ ++\mathbf{k}) \\ \mathbb{E}[\mathbf{k}][\mathbf{j}]; \\ \mathbb{E}[\mathbf{k}][\mathbf{j}]; \\ \end{array} \\ \left\{ \begin{array}{l} \Theta^{S2}_{\vec{x}_{S2}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \\ \cdot \begin{pmatrix} \mathbf{i} \\ \mathbf{k} \\ \mathbf{n} \\ \mathbf{l} \end{pmatrix} \\ \end{array} \right\} \end{array} \right.$$

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Original Schedule

$$\begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \\ B[k][j]; \\ \end{array} \\ \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \begin{array}{c} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ C[i][j] \ += A[i][k] \\ B[k][j]; \\ \end{array} \\ \end{array} \\ \begin{array}{c} \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \\ \end{array} \\ \begin{array}{c} \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] \ += A[i][k] \\ B[k][j]; \\ \end{array} \\ \end{array} \\ \begin{array}{c} \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix} \\ \end{array}$$

Т

- Represent Static Control Parts (control flow and dependences must be statically computable)
- Use code generator (e.g. CLooG) to generate C code from polyhedral representation (provided iteration domains + schedules)

Distribute loops

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \end{cases} \\ \Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} . \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{C[i][j] = 0; } \\ \text{for } (i = n; i < 2^{n}; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (k = 0; k < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (k = 0; k < n; ++k) \\ \text{C[i-n][j] += A[i-n][k] * \\ B[k][j]; \end{cases}$$

All instances of S1 are executed before the first S2 instance

Distribute loops + Interchange loops for S2

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{S1: } C[i][j] = 0; \\ \text{for } (k = 0; k < n; ++k) \\ \text{S2: } C[i][j] += A[i][k] * \\ B[k][j]; \\ \text{} \end{cases} \\ \Theta^{S2} \vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$$

$$\begin{cases} \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{c[i][j] = 0; } \\ \text{for } (k = n; k < 2*n; ++k) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (j = 0; j < n; ++j) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i = 0; i < n; ++i) \\ \text{for } (i$$

▶ The outer-most loop for S2 becomes *k*

Illegal schedule

L

All instances of S1 are executed <u>after</u> the last S2 instance

A legal schedule

Delay the S2 instances

Constraints must be expressed between Θ^{S1} and Θ^{S2}

Implicit fine-grain parallelism

L

$$\begin{array}{l} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (j = 0; \ j < n; \ ++j) \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{S2: } C[i][j] = 0; \\ \text{for } (k = 0; \ k < n; \ ++k) \\ \text{B[k][j]; } \\ \end{array} \right) \\ \begin{array}{l} \Theta^{S1}.\vec{x}_{S1} = (1 \ 0 \ 0 \ 0). \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \Theta^{S1}.\vec{x}_{S1} = (1 \ 0 \ 0 \ 0). \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix} \\ \end{array} \\ \begin{array}{l} \text{for } (i = 0; \ i < n; \ ++i) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{C[i][j] = 0; } \\ \text{for } (k = n; \ k < 2*n; \ ++k) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{or } (i = 0; \ i < n; \ ++i) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{pfor } (i = 0; \ i < n; \ ++i) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{pfor } (i = 0; \ i < n; \ ++i) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{pfor } (j = 0; \ j < n; \ ++j) \\ \text{pfor } (i = 0; \ i < n; \ ++i) \\ \text{B[k-n][j]; \end{array} \\ \end{array}$$

 \blacktriangleright Less (linear) rows than loop depth \rightarrow remaining dimensions are parallel

Representing a schedule

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} . (\mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf{k} \ \mathbf{n} \ \mathbf{n} \ \mathbf{1} \ \mathbf{1})^{T}$$

Representing a schedule

i.

$$\Theta \vec{x} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} i & j & i & j & k & n & n & 1 & 1 \\ \vec{r} & \vec{p} & \mathbf{c} \end{pmatrix}^{T}$$

Representing a schedule

<pre>for (i = 0; i < n; ++i) for (j = 0; j < n; ++j) { S1: C[i][j] = 0; for (k = 0; k < n; ++k)</pre>	$\Theta^{S1}.\vec{x}_{S1} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} . \begin{pmatrix} i \\ j \\ n \\ 1 \end{pmatrix}$	<pre>for (i = n; i < 2*n; ++i) for (j = 0; j < n; ++j) C[i][j] = 0; for (k= n+1; k<= 2*n; ++k)</pre>
<pre>S2: C[i][j] += A[i][k]*</pre>	$\Theta^{S2}.\vec{x}_{S2} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}. \begin{pmatrix} i \\ j \\ k \\ n \\ 1 \end{pmatrix}$	<pre>for (j = 0; j < n; ++j) for (i = 0; i < n; ++i) C[i][j] += A[i][k-n-1]* B[k-n-1][j];</pre>

	Transformation	Description
ī	reversal	Changes the direction in which a loop traverses its iteration range
	skewing	Makes the bounds of a given loop depend on an outer loop counter
	interchange	Exchanges two loops in a perfectly nested loop, a.k.a. permutation
<i>p</i>	fusion	Fuses two loops, a.k.a. jamming
	distribution	Splits a single loop nest into many, a.k.a. fission or splitting
С	peeling	Extracts one iteration of a given loop
	shifting	Allows to reorder loops

for (i = 0; i <= N; ++i) {
 Blue(i);
 Red(i);
}</pre>

Perfectly aligned fusion

Blue(0);
for (i = 1; i <= N; ++i) {
 Blue(i);
 Red(i-1);
}
Red(N);</pre>

Fusion with shift of 1 Not all instances are fused


```
for (i = 0; i < P; ++i)
Blue(i);
for (i = P; i <= N; ++i) {
  Blue(i);
  Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
  Red(i-P);</pre>
```

Fusion with parametric shift of P

Automatic generation of prolog/epilog code


```
for (i = 0; i < P; ++i)
Blue(i);
for (i = P; i <= N; ++i) {
  Blue(i);
  Red(i-P);
}
for (i = N+1; i <= N+P; ++i)
  Red(i-P);</pre>
```

Many other transformations may be required to enable fusion: interchange, skewing, etc.

Scheduling Matrix

Definition (Affine multidimensional schedule)

Given a statement *S*, an affine schedule Θ^S of dimension *m* is an affine form on the *d* outer loop iterators \vec{x}_S and the *p* global parameters \vec{n} . $\Theta^S \in \mathbb{Z}^{m \times (d+p+1)}$ can be written as:

$$\Theta^{S}(\vec{x}_{S}) = \begin{pmatrix} \theta_{1,1} & \dots & \theta_{1,d+p+1} \\ \vdots & & \vdots \\ \theta_{m,1} & \dots & \theta_{m,d+p+1} \end{pmatrix} \cdot \begin{pmatrix} \vec{x}_{S} \\ \vec{n} \\ 1 \end{pmatrix}$$

 $\Theta_k^{\mathcal{S}}$ denotes the kth row of $\Theta^{\mathcal{S}}$.

Definition (Bounded affine multidimensional schedule)

 Θ^S is a bounded schedule if $\theta^S_{i,j} \in [x,y]$ with $x,y \in \mathbb{Z}$

Another Representation

One can separate coefficients of Θ into:

- The iterator coefficients
- 2 The parameter coefficients
- The constant coefficients

One can also enforce the schedule dimension to be 2d+1.

- A d-dimensional square matrix for the linear part
 - represents composition of interchange/skewing/slowing
- A $d \times n$ matrix for the parametric part
 - represents (parametric) shift
- A d+1 vector for the scalar offset
 - represents statement interleaving
- See URUK for instance

Computing the 2d+1 Identity Schedule

do i=1, n

$$S_1 \mid x = a(i,i)$$

do j=1, i-1
 $S_2 \mid x = x - a(i,j)**2$
 $S_3 \mid p(i) = 1.0/sqrt(x)$
do j=i+1, n
 $S_4 \mid x = a(i,j)$
do k=1, i-1
 $S_5 \mid x = x - a(j,k)*a(i,k)$
 $S_6 \mid a(j,i) = x*p(i)$

Transformation Catalogue [1/2]

Syntax	Effect	
UNIMODULAR(P,U)	$\forall S \in \mathcal{S}_{cop} \mid P \sqsubseteq \beta^S, A^S \leftarrow U.A^S; \ \Gamma^S \leftarrow U.\Gamma^S$	
Shift(P,M)	$\forall S \in \mathcal{S}_{\text{cop}} \mid P \sqsubseteq \beta^S, \Gamma^S \leftarrow \Gamma^S + M$	
CUTDOM(P,c)	$\forall S \in \mathcal{S}_{cop} \mid P \sqsubseteq \beta^S, \Lambda^S \leftarrow AddRow\big(\Lambda^S, 0, c/\gcd(c_1, \dots, c_{d^S + d_W^S + d_{gp} + 1})\big)$	
$Extend(P,\ell,c)$	$ \forall S \in \mathcal{S}_{cop} \mid P \sqsubseteq \beta^{S}, \begin{cases} d^{S} \leftarrow d^{S} + 1; \ \Lambda^{S} \leftarrow AddCol(\Lambda^{S}, c, 0); \\ \beta^{S} \leftarrow AddRow(\beta^{S}, \ell, 0); \\ A^{S} \leftarrow AddRow(AddCol(A^{S}, c, 0), \ell, 1_{\ell}); \\ \Gamma^{S} \leftarrow AddRow(\Gamma^{S}, \ell, 0); \\ \forall (A, F) \in \mathcal{L}_{h_{S}}^{S}, F \leftarrow AddRow(F, \ell, 0) \end{cases} $	
ADDLOCALVAR(P)	$ \begin{array}{l} \forall S \in \mathcal{S}_{cop} \mid P \sqsubseteq \beta^{S}, d_{lv}^{S} \leftarrow d_{lv}^{S} + 1; \ \Lambda^{S} \leftarrow AddCol(\Lambda^{S}, d^{S} + 1, 0); \\ \forall (A, F) \in \mathcal{L}_{hs}^{S} \cup \mathcal{R}_{hs}^{S}, F \leftarrow AddCol(F, d^{S} + 1, 0) \end{array} $	
$PRIVATIZE(A, \ell)$	$\forall S \in \mathcal{S}_{cop}, \forall (\mathtt{A}, \mathtt{F}) \in \mathcal{L}^{S}_{hs} \cup \mathcal{R}^{S}_{hs}, \mathtt{F} \leftarrow AddRow(\mathtt{F}, \ell, 1_{\ell})$	
$CONTRACT(A, \ell)$	$\forall S \in \mathcal{S}_{cop}, \forall (\mathtt{A}, \mathtt{F}) \in \mathcal{L}^{S}_{hs} \cup \mathcal{R}^{S}_{hs}, \mathtt{F} \leftarrow RemRow(\mathtt{F}, \ell)$	
FUSION(P,o)	$b = \max\{\beta_{\dim(P)+1}^{S} \mid (P, o) \sqsubseteq \beta^{S}\} + 1$ Move((P, o + 1), (P, o + 1), b); Move(P, (P, o + 1), -1)	
FISSION(P, o, b)	Move $(P, (P, o, b), 1)$; Move $((P, o+1), (P, o+1), -b)$	
MOTION(P,T)	if dim $(P) + 1 = \dim(T)$ then $b = \max\{\beta_{\dim(P)}^S \mid P \sqsubseteq \beta^S\} + 1$ else $b = 1$	
	$\begin{array}{l} Move(pfx(T,\dim(T)-1),T,b) \\ \forall S \in \mathcal{S}_{cop} \mid P \sqsubseteq \beta^S, \beta^S \leftarrow \beta^S + T - pfx(P,\dim(T)) \\ Move(P,P,-1) \end{array}$	

Transformation Catalogue [2/2]

Syntax	Effect	Comments
INTERCHANGE (P, o)	$\forall S \in \mathcal{S}_{\operatorname{cop}} \mid P \sqsubseteq \beta^S,$	swap rows o and $o + 1$
	$ \left\{ \begin{array}{l} \mathbf{U} = \mathbf{I}_{d^S} - 1_{o,o} - 1_{o+1,o+1} + 1_{o,o+1} + 1_{o+1,o}; \\ \mathbf{U} \text{NIMODULAR}(\boldsymbol{\beta}^S, \mathbf{U}) \end{array} \right. $	
$\operatorname{Skew}(P, \ell, c, s)$	$\forall S \in \mathcal{S}_{\operatorname{cop}} \mid P \sqsubseteq \beta^S,$	add the skew factor
	$ \begin{cases} \mathbf{U} = \mathbf{I}_{d^{S}} + s \cdot 1_{\ell,c}; \\ \mathbf{U} \mathbf{N} \mathbf{I} \mathbf{M} \mathbf{O} \mathbf{U} \mathbf{L} \mathbf{A} \mathbf{R}(\boldsymbol{\beta}^{S}, \mathbf{U}) \end{cases} $	
Reverse(P,o)	$\forall S \in \mathcal{S}_{\operatorname{cop}} \mid P \sqsubseteq \beta^S,$	put a -1 in (0,0)
	$ \begin{cases} \mathbf{U} = \mathbf{I}_{d^{S}} - 2 \cdot 1_{o,o}; \\ \mathbf{U} \mathbf{N} \mathbf{I} \mathbf{M} \mathbf{O} \mathbf{U} \mathbf{L} \mathbf{A} \mathbf{R}(\boldsymbol{\beta}^{S}, \mathbf{U}) \end{cases} $	
STRIPMINE(P,k)	$\forall S \in \mathcal{S}_{\text{cop}} \mid P \sqsubseteq \beta^S,$	
	$\begin{cases} c = \dim(P); \\ EXTEND(\beta^{S}, c, c); \\ u = d^{S} + d_{lv}^{S} + d_{gp} + 1; \\ CUTDOM(\beta^{S}, -k \cdot 1_{c} + (\mathbf{A}_{c+1}^{S}, \Gamma_{c+1}^{S})); \\ CUTDOM(\beta^{S}, k \cdot 1_{c} - (\mathbf{A}^{S}, \dots, \Gamma_{s-1}^{S}) + (k-1)1_{c}) \end{cases}$	insert intermediate loop constant column $k \cdot \mathbf{i}_c \leq \mathbf{i}_{c+1}$ $\mathbf{i}_{c+1} \leq k \cdot \mathbf{i}_c + k - 1$
$TILE(P, o, k_1, k_2)$	$\forall S \in \mathcal{S}_{\text{cop}} \mid (P, o) \sqsubseteq \beta^S,$	
	$\int \text{STRIPMINE}((P,o),k_2);$	strip outer loop
	$\begin{cases} \text{STRIPMINE}(P,k_1); \\ \text{STRIPMINE}(P,k_1) \end{cases}$	strip inner loop
	INTERCHANGE((P,0), dim(P))	interchange

Some Final Observations

Some classical pitfalls

- > The number of rows of Θ does not correspond to actual parallel levels
- Scalar rows vs. linear rows
- Linear independence
- Parametric shift for domains without parametric bound