Polyhedra and Lattices

Louis-Noël Pouchet

CS & ECE Colorado State University

February 23, 2020

PPoPP'20 Tutorial

Math Corner

1

The Affine Qualifier

Definition (Affine function)

A function $f : \mathbb{K}^m \to \mathbb{K}^n$ is affine if there exists a vector $\vec{b} \in \mathbb{K}^n$ and a matrix $A \in \mathbb{K}^{m \times n}$ such that:

 $\forall \vec{x} \in \mathbb{K}^m, \ f(\vec{x}) = A\vec{x} + \vec{b}$

Definition (Affine half-space)

An affine half-space of \mathbb{K}^m (affine constraint) is defined as the set of points:

 $\{\vec{x} \in \mathbb{K}^m \mid \vec{a}.\vec{x} \le \vec{b}\}\$

Polyhedron (Implicit Representation)

Definition (Polyhedron)

A set $S \in \mathbb{K}^m$ is a polyhedron if there exists a system of a finite number of inequalities $A\vec{x} \leq \vec{b}$ such that:

$$\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid A\vec{x} \le \vec{b} \}$$

Equivalently, it is the intersection of finitely many half-spaces.

Definition (Polytope)

A polytope is a bounded polyhedron.

Integer Polyhedron

Definition (\mathbb{Z} -polyhedron)

It is a polyhedron where all its extreme points are integer valued

Definition (Integer hull)

The integer hull of a rational polyhedron \mathcal{P} is the largest set of integer points such that each of these points is in \mathcal{P} .

For the moment, we will "say" an integer polyhedron is a polyhedron of integer points (language abuse)

Rational and Integer Polytopes

Another View of Polyhedra

The <u>dual</u> representation models a polyhedron as a combination of lines L and rays R (forming the polyhedral cone) and vertices V (forming the polytope)

Definition (Dual representation)

$$\mathcal{P}: \{ \vec{x} \in \mathbb{Q}^n \mid \vec{x} = L\vec{\lambda} + R\vec{\mu} + V\vec{\nu}, \ \vec{\mu} \ge 0, \ \vec{\nu} \ge 0, \ \sum \nu_i = 1 \}$$

Definition (Face)

A face ${\mathcal F}$ of ${\mathcal P}$ is the intersection of ${\mathcal P}$ with a supporting hyperplane of ${\mathcal P}.$ We have:

 $\dim(\mathcal{F}) \leq \dim(\mathcal{P})$

Definition (Facet)

A facet $\mathcal F$ of $\mathcal P$ is a face of $\mathcal P$ such that:

 $\dim(\mathcal{F}) = \dim(\mathcal{P}) - 1$

Some Equivalence Properties

Theorem (Fundamental Theorem on Polyhedral Decomposition)

If $\mathcal P$ is a polyhedron, then it can be decomposed as a polytope $\mathcal V$ plus a polyhedral cone $\mathcal L$.

Theorem (Equivalence of Representations)

Every polyhedron has both an implicit and dual representation

- Chernikova's algorithm can compute the dual representation from the implicit one
- The Dual representation is heavily used in polyhedral compilation
- Some works operate on the constraint-based representation (Pluto)

Parametric Polyhedra

Definition (Paramteric polyhedron)

Given \vec{n} the vector of symbolic parameters, \mathcal{P} is a parametric polyhedron if it is defined by:

$$\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid A\vec{x} \le B\vec{n} + \vec{b} \}$$

- Requires to adapt theory and tools to parameters
- Can become nasty: case distinctions (QUAST)
- Reflects nicely the program context

Some Useful Algorithms

All extended to parametric polyhedra:

- Compute the facets of a polytope: **PolyLib** [Wilde et al]
- Compute the volume of a polytope (number of points): Barvinok [Claus/Verdoolaege]
- Scan a polytope (code generation): CLooG [Quillere/Bastoul]
- Find the lexicographic minimum: **PIP** [Feautrier]

Operations on Polyhedra

Definition (Intersection)

The intersection of two convex sets \mathcal{P}_1 and \mathcal{P}_2 is a convex set \mathcal{P} :

$$\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid \vec{x} \in \mathcal{P}_1 \land \vec{x} \in \mathcal{P}_2 \}$$

Definition (Union)

The union of two convex sets \mathcal{P}_1 and \mathcal{P}_2 is a set \mathcal{P} :

$$\mathcal{P} = \{ \vec{x} \in \mathbb{K}^m \mid \vec{x} \in \mathcal{P}_1 \lor \vec{x} \in \mathcal{P}_2 \}$$

The union of two convex sets may not be a convex set

Lattices

Definition (Lattice)

A subset *L* in \mathbb{Q}^n is a lattice if is generated by integral combination of finitely many vectors: a_1, a_2, \ldots, a_n ($a_i \in \mathbb{Q}^n$). If the a_i vectors have integral coordinates, *L* is an integer lattice.

Definition (*Z*-polyhedron)

A Z-polyhedron is the intersection of a polyhedron and an affine integral full dimensional lattice.

Pictured Example

Example of a *Z*-polyhedron:

Quick Facts on *Z***-polyhedra**

- Iteration domains are in fact Z-polyhedra with unit lattice if loop has unit stride
- Intersection of Z-polyhedra is not convex in general
- Union is complex to compute
- Can count points, can optimize, can scan
- Implementation available for most operations in PolyLib

Image and Preimage

Definition (Image)

The image of a polyhedron $\mathcal{P} \in \mathbb{Z}^n$ by an affine function $f : \mathbb{Z}^n \to \mathbb{Z}^m$ is a Z-polyhedron \mathcal{P}' :

 $\mathcal{P}' = \{ f(\vec{x}) \in \mathbb{Z}^m \mid \vec{x} \in \mathcal{P} \}$

Definition (Preimage)

The preimage of a polyhedron $\mathcal{P} \in \mathbb{Z}^n$ by an affine function $f : \mathbb{Z}^n \to \mathbb{Z}^m$ is a \mathcal{Z} -polyhedron \mathcal{P}' :

$$\mathcal{P}' = \{ \vec{x} \in \mathbb{Z}^n \mid f(\vec{x}) \in \mathcal{P} \}$$

We have $Image(f^{-1}, \mathcal{P}) = Preimage(f, \mathcal{P})$ if f is invertible.