
Generating Piecewise-Regular Code
from Irregular Structures

Travis Augustine1 Jana Sarma1 Louis-Noël Pouchet1 Gabriel Rodríguez2

1 Colorado State University, USA
2 Universidade da Coruña, Spain

Funded in part by

ACM SIGPLAN Conference on Programming Language Design and Implementation
at 2019 ACM Federated Computing Research Conference

June 25, 2019

2

Overview

Ø Irregular and sparse data structures are central in scientific computing and in
machine learning
Ø Graph processing, neural net inference after weight pruning, etc.

Ø Typical approach: encode the sparse structure in some format, and provide a
generic executor code to traverse the data

Ø Proposed approach: encode the sparse structure with polyhedra, and generate a
specialized executor code for that structure

Ø Tunable: target SIMD / performance, target compression / code size, etc.

Ø General: works for n-dimensional sparse data structures (e.g., sparse tensors)

Data-specific compilation
Main idea: synthesize code that is specialized to a specific

sparse data structure, using polyhedra

3

Sparse Data Representations

Figure 1: Sparse representations for matrix A in COO, CSR, ELL and HYB.

A parameter, k, is used to partition the first k non-zeros
from each row for storiage in the ELL part, and the rest are
stored in COO format. If a row has less than k non-zeros,
then it is padded with zeros as shown in Figure 1. The choice
of the cut-off point depends on the input matrix, and can
significantly affect performance.

2.3 GPUs and Compilation
Two NVIDIA Tesla GPUs (K20c and K40c) and one Fermi

GPU (GTX 580) were used for our experiments. Table 3
shows the details for each GPU. When selecting the GPUs,
we have considered variety in global memory bandwidth (i.e.
192 vs 288 GB/s) as well as the compute capacity (i.e. total
number of CUDA cores). The kernels were compiled using
the NVIDIA C Compiler (nvcc) version 6.5, with the max-
imum compute capability supported by each device. We
enabled standard optimizations using the −O3 switch.

GPU Model Fermi Tesla K20c Tesla K40c

Chip GTX580 GK110 GK110B
Compute Capability 2.0 3.5 3.5
Num. of SMs 16 13 15
ALUs per SM 32 192 192
Warp size 32 32 32
Threads per CTA 1024 1024 1024
Threads per SM(X) 1536 2048 2048
Sh-mem /CTA(KB) 48 48 48
L2 cache(KB) 768 1536 1536
Glob-mem (GB) 1.5 5 12
Glob-mem (GB/s) 192 208 288
Tera-FMA/s (SP/DP) 1.5/- 3.5/1.2 4.3/1.4

Table 3: GPUs hosted the experiments.

3. DATASET FEATURE ANALYSIS

3.1 Dataset Selection
We first needed a dataset of sparse matrices representa-

tive of most sparsity feature cases. For this purpose, we
analyzed sparse matrices from the UFL repository [12] in
Matrix Market format [18]. From more than 2650 matri-
ces (from 177 groups of applications) in the repository, we

selected 682 matrices from 114 groups. These matrices in-
cluded all those used in numerous previous GPU studies [6,
8, 2, 1, 27]. While previous work using sparse matrices has
usually tried to group matrices based on the domain where
they arise, in this work we instead look to obtain a sta-
tistically relevant coverage among several key quantitative
features describing the sparsity structure of the matrix.
Our selection mechanism applied the following constraints

to set bounds on two metrics: nnz tot, the total number of
non-zero entries in the matrix, and n rows, the number of
rows:

• C1: the sparse matrix does not fit in the CPU LLC
(8 MB for our machines). This is to focus on matrices
where GPU execution is most beneficial.

• C2: the sparse matrix fits in the “effective” space on
the global memory of the device (i.e. single-GPU exe-
cution).

• C3: the number of rows is large enough to guaran-
tee minimum GPU concurrency. This is achieved by
assuming that a warp works on a row; thus the mini-
mum number of rows equals the maximum warp-level
concurrency on a given device.

The size of the matrix (for C1 and C2) is conservatively
computed as S = 16 × nnz tot, where a nonzero in COO,
double-precision, needs 16 bytes (8 bytes for data plus two
4-byte indexes). It is also assumed that up to 80% of the
global memory on the device is available to hold the sparse
matrix data. In C3, the maximum warp-level concurrency is
computed by dividing the maximum number of threads per
GPU (i.e. Threads/SMX ×#SMXs) by the warp size.

3.2 Feature Set
Our objective is to gather relevant information about the

sparsity structure of the matrix without utilizing any do-
main knowledge, i.e., without considering the domain where
the matrix originates. For this work, we computed a set of
features as shown in Table 4.
These features were (re-)computed by doing an initial

traversal of the input matrix to gather these statistics. We
show later in Sec. 6 that only a small subset of these fea-
tures are actually needed for effective prediction of the best

101

4

Computing on Sparse Structures

for (i = 0; i < nrows; i++)
for (j = pos[i]; j <= pos[i+1]; j++)

y[i] += csr_data[j] * x[cols[j]];

Compressed Sparse Row (CSR) code for sparse matrix vector multiply

Ø Code is generic for any sparse matrix
Ø For every nonzero of the matrix, performs 4 memory reads
Ø SIMD vectorization requires gather/scatter, code is not regular/polyhedral

for (j = 2; j <= 5; j++)
y[1] += csr_data[j-2] * x[j];

y[3] += csr_data[5] * x[4];
y[4] += csr_data[6] * x[2];

Code specialized for one specific sparsity structure:

i

j

1
2
3

1 2 3 …

…

5

Application Context, Pros and Cons
Ø Generating specialized code for one sparsity structure:

ØAvoids the need for genericity: can remove indirection arrays / irregularity
ØMakes the loop nests easier to vectorize
ØRobust to any data changes, only the sparsity itself should not change
ØMay reduce footprint, but can lead to very large code size too
ØLoses genericity: each sparse structure has a different executor program

Ø Some important use cases:
ØSparse Matrix Vector Multiply (especially iterative SpMV)
Ø Inference of some classes neural networks (especially after weight pruning)
ØSparse tensors

6

But What is a Polyhedron?

i

j

Grid of 2D Integer points

Example

7

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points
i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4

8

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points
i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4

9

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 2 ≤ i ≤ 4 and
2 ≤ j ≤ 4 }

Polyhedron: described as the intersection
of half-planes (e.g., i ≤ 2), all points in
the intersection are in the polyhedron

Dimensionality: 2

In this work: model only polyhedra of
integer points

i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4

10

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 2 ≤ i ≤ 4 and
2 ≤ j ≤ 4 }

Polyhedron: described as the intersection
of half-planes (e.g., i ≤ 2), all points in
the intersection are in the polyhedron

Dimensionality: 2

In this work: model only polyhedra of
integer points

i j
2 2
2 3
2 4
3 2
3 3
3 4
4 2
4 3
4 4

More complex shapes?

11

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 2 ≤ i ≤ 4 and
3 ≤ j ≤ 4 and
j ≥ i and j ≤ i+1 }

Polyhedron: possibly many half planes
to describe it => affine inequalities

Inequalities may involve several
variables / dimensions

i j
2 3
3 3
3 4
4 4

12

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

But what about holes in the shape?

Still describes 9 points!!

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 2 ≤ i ≤ 4 and
2 ≤ j ≤ 4 }

13

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 }

A polyhedron intersected with a lattice is a Z-Polyhedron

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }

D contains 4 points, the lattice L
captures their exact coordinates
(stride of 2 here)

i j
2 2
2 4
4 2
4 4

14

But What is a Polyhedron?

i

j

2D Integer points

Compact descriptionExample List of points

Z-Polyhedra can have “holes”, needed for sparse structures

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 }

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }

D contains 4 points, the lattice L
captures their exact coordinates
(stride of 2 here)

15

Z-Polyhedra are Code, Too

i

j

2D Integer points

Compact descriptionExample List of points

for (i = 1; i <= 2; i++)
for (j = 1; j <= 2; j++)

S(2i,2j); // x = 2i, y = 2j
This code traverses all and only points in the

Z-polyhedron

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 }

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }

16

Z-Polyhedra are Code, Too

i

j

2D Integer points

Compact descriptionExample List of points

for (i = 1; i <= 2; i++)
for (j = 1; j <= 2; j++)

S(2i,2j); // x = 2i, y = 2j
This code traverses all and only points in the

Z-polyhedron

i j
2 2
2 4
4 2
4 4

D : { [i,j] : 1 ≤ i ≤ 2 and
1 ≤ j ≤ 2 }

+
Intersected with an integer lattice:
L : { [i,j] −> [x,y] : x = 2i and y = 2j }

17

And What is a Sparse Structure?

Here, a sparse structure is simply a series of integer tuples

Example: a sparse matrix is represented by the tuple (i,j,data)

HB/nos1 matrix from SuiteSparse

Generating Piecewise-Regular Code from Irregular Structures PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, whereN = M =
1000. The polyhedron describing the nonzero elements is
D : {[i, j] : 0 <= i < 1000^i = j}. OnceD is built, the set of
(i, j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.1
Numerous di�culties arise with this approach. First, we

must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is su�-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-o� regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]2. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.
As can be seen in Fig. 2b, all the nonzeros lie nearby the

main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra Di that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-o� between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodríguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the �nal reconstructed C program.
Table 1 shows di�erent reconstruction choices, ranging

from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-o�.

1The j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.
2In the remainder of the paper we will refer to di�erent matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

i cols[j] &(A_data[j])
1: 0 0 0x00
2: 0 3 0x04
3: 1 1 0x08
4: 1 4 0x0C
5: 1 5 0x10
6: 2 2 0x14
7: 2 4 0x18
8: 2 5 0x1C
9: 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

...

(a)

(b) (c) (d)

Figure 2. Di�erent sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 ⇥ 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072, a 1, 072 ⇥ 1, 072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxd) for matrix HB/nos1
(1,017 nonzero elements).

maxd 2 3 4 5 6 7 8
pieces 312 159 81 4 3 2 1
cycles 11373 11583 9938 35730 34116 39306 50371
LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj,addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D a�ne function F (i) = 2i : 1 i 4, but the se-
quence 2, 4, 8, 10 cannot.3 Here a 2D function F (i, j) = 6i+2j :
0 i 1 ^ 1 j 2 instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there
3We only reconstruct a�ne multidimensional functions, to ensure polyhe-
dral code generation can be applied.

We handle sparse structures of arbitrary dimensionality,
this includes sparse tensors

… ………

j

i

18

Representing Integer Tuples as Z-Polyhedra
Ø A Z-Polyhedron models sets of integer tuples, with “holes”

Ø A sparse structure is a list of integer tuples, or points

Ø So we can represent a sparse structure as a union of Z-polyhedra!
ØTarget scenario: many points can be captured in a single polyhedron
ØPerformance objective: polyhedra should be easy to SIMD vectorize

Ø Challenges:
1. How to determine the shapes (polyhedron and lattice) that captures the

largest number of points, efficiently?
2. How to reach good performance for e.g. SpMV programs encoded as

polyhedra?

19

Encoding Sparsity with Polyhedra

HB/Nos1 matrix from SuiteSparse

Generating Piecewise-Regular Code from Irregular Structures PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, whereN = M =
1000. The polyhedron describing the nonzero elements is
D : {[i, j] : 0 <= i < 1000^i = j}. OnceD is built, the set of
(i, j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.1
Numerous di�culties arise with this approach. First, we

must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is su�-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-o� regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]2. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.
As can be seen in Fig. 2b, all the nonzeros lie nearby the

main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra Di that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-o� between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodríguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the �nal reconstructed C program.
Table 1 shows di�erent reconstruction choices, ranging

from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-o�.

1The j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.
2In the remainder of the paper we will refer to di�erent matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

i cols[j] &(A_data[j])
1: 0 0 0x00
2: 0 3 0x04
3: 1 1 0x08
4: 1 4 0x0C
5: 1 5 0x10
6: 2 2 0x14
7: 2 4 0x18
8: 2 5 0x1C
9: 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

...

(a)

(b) (c) (d)

Figure 2. Di�erent sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 ⇥ 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072, a 1, 072 ⇥ 1, 072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxd) for matrix HB/nos1
(1,017 nonzero elements).

maxd 2 3 4 5 6 7 8
pieces 312 159 81 4 3 2 1
cycles 11373 11583 9938 35730 34116 39306 50371
LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj,addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D a�ne function F (i) = 2i : 1 i 4, but the se-
quence 2, 4, 8, 10 cannot.3 Here a 2D function F (i, j) = 6i+2j :
0 i 1 ^ 1 j 2 instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there
3We only reconstruct a�ne multidimensional functions, to ensure polyhe-
dral code generation can be applied.

D1 : { [i,j,k] : i = 2 and 4 <= j <= 5 and k = 4j + 8 }

D2: { [i,j,k] : 2 <= i <= 3 and i = j and k = 16i – 12 }

When modeling problems like SpMV, we consider the trace reorderable
That is, non-consecutive points in the original trace may be grouped together

j

i

20

Complexity Trade-Offs [1/2]
Ø A Z-Polyhedron may use more dimensions than the tuple size

ØThink tiling a 2D iteration space: you obtain a new 4D iteration space, but that
still describes exactly the same original set of 2D points

Ø Using more variables/dimensions in the polyhedron (maxd) reduces
the number of polyhedra needed (pieces) to capture the full matrix
ØLeads to better compaction (LoC)

Ø But it does not necessarily lead to better performance

Generating Piecewise-Regular Code from Irregular Structures PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Let us illustrate with a simple diagonal matrix where only
elements (i, i) (on the diagonal) are nonzero, whereN = M =
1000. The polyhedron describing the nonzero elements is
D : {[i, j] : 0 <= i < 1000^i = j}. OnceD is built, the set of
(i, j) values to operate on for this matrix is known. Then these
polyhedra are converted into a loop-based code that scans
them, executing the corresponding matrix-vector operation
in statement S for each point, this is exactly polyhedral code
generation [3]. Figure 1c shows the code specialized to this
diagonal matrix, a purely regular/polyhedral program.1
Numerous di�culties arise with this approach. First, we

must ensure that it is always possible to recover the (i, j)
indexing to enable integration inside a polyhedral program,
yet we do not want to constrain the reconstructed structure
to be 2D: Fig. 1c uses a 1D array for example, which is su�-
cient to capture in a single domain all nonzero elements here,
but as shown below it may also be possible to reduce the
number of pieces/polyhedra by increasing their dimension-
ality. Second, we must control the number and complexity
of the polyhedra being rebuilt to describe the sparse matrix.
An extreme case where each nonzero is captured in a single
polyhedron (one point in it) is always possible, yet would be
practically useless.

Trading-o� regularity discovery for performance We
now illustrate with an actual sparse matrix. Consider the
sequence of accesses in Fig. 2a, corresponding to tracing
the execution of the SpMV code in Fig. 1a using the matrix
HB/nos1 from the SuiteSparse Matrix Collection [13]2. A
convenient feature of the SpMV computation is that the (i, j)
coordinates of each nonzero are explicitly built to access the
vectors, in other words tracing the values of i and cols[j]
gives exactly the (i, j) coordinates at which nonzeros exist.
As can be seen in Fig. 2b, all the nonzeros lie nearby the

main diagonal, and zooming on this diagonal in Fig. 2c, we
can see upon closer inspection a recognizable sparsity pat-
tern. Our objective is to automatically build a collection of
polyhedra Di that captures thse sets of nonzero coordinates.

Table 1 displays for the HB/nos1 the trade-o� between the
number of pieces (stmts), their maximal dimensionality (i.e.,
the depth of the loop nest needed to scan a piece), and the per-
formance in cycles obtained by applying a geometric-based
approach for reconstructing polyhedra, similar to Rodríguez
et al. [28]. Code size is reported as Lines of Code (LoC) in
the �nal reconstructed C program.
Table 1 shows di�erent reconstruction choices, ranging

from a single 8D domain (intuitively this will lead to an 8-
deep loop nest to scan the polyhedrally compressed matrix)
to 312 disjoint 2D pieces. Section 6 discusses the potential
performance impacts of such trade-o�.

1The j loop is shown for illustration purpose, and is not present in the code
we actually generate as it only iterates exactly once.
2In the remainder of the paper we will refer to di�erent matrices in the
SuiteSparse collection using this <group>/<matrix> notation.

i cols[j] &(A_data[j])
1: 0 0 0x00
2: 0 3 0x04
3: 1 1 0x08
4: 1 4 0x0C
5: 1 5 0x10
6: 2 2 0x14
7: 2 4 0x18
8: 2 5 0x1C
9: 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

...

(a)

(b) (c) (d)

Figure 2. Di�erent sparse matrices from the HB group of the
SuiteSparse Matrix Collection. Figure a) shows an excerpt
of the accesses performed during SpMV of matrix HB/nos1.
The nonzero elements in this matrix are shown in Fig. b),
and a zoom of its main diagonal is provided in Fig. c). This
is a 237 ⇥ 237 matrix with 1, 017 nonzero elements, and its
reconstructed code consists of a single statement inside an
8-dimensional loop. Figure d) shows the nonzero elements in
HB/can_1072, a 1, 072 ⇥ 1, 072 matrix with 12, 444 nonzero
elements which does not exhibit any apparent regularity. Its
reconstructed code includes 870 pieces of up to 8 dimensions.

Table 1. Evolution of the number of pieces as a function
of their maximal dimensionality (maxd) for matrix HB/nos1
(1,017 nonzero elements).

maxd 2 3 4 5 6 7 8
pieces 312 159 81 4 3 2 1
cycles 11373 11583 9938 35730 34116 39306 50371
LoC 772 1004 671 195 368 165 101

Intuitively, the dimensionality of a piece corresponds to
the number of variables used to describe the evolution of val-
ues of a set of integer tuples, e.g. the 3D tuple (i, colsj,addrA).
For example, the 1D sequence 2, 4, 6, 8 can be totally captured
by a 1D a�ne function F (i) = 2i : 1 i 4, but the se-
quence 2, 4, 8, 10 cannot.3 Here a 2D function F (i, j) = 6i+2j :
0 i 1 ^ 1 j 2 instead can capture in a single 2D
polyhedron this set of points. Extending the reasoning, there
3We only reconstruct a�ne multidimensional functions, to ensure polyhe-
dral code generation can be applied.

21

Complexity Trade-Offs [2/2]
Ø Complex sparse structures need many polyhedra to capture them

ØThis sparse matrix, HB/can_1072 is
reconstructed with 870 polyhedra, of up
to 8 dimensions
Ø Code size is directly related to the
number of polyhedra needed

Ø In this work, we design a series of algorithms that trade-off the
number of polyhedra needed versus their “complexity”
ØTry simple shape first: “rectangles”, with regular strides (SIMD-friendly)
ØTry more complex shapes afterwards (skewed ones, with many dimensions)

22

High-Level Procedure
Ø 1: obtain a series of integer tuples describing the sparse structure coordinates

Ø Simply scan the structure, printing the coordinates

Ø 2: Find simple, “rectangular” shapes by mining the trace
Ø Single-level codelets: prototype shapes are chosen to be SIMD friendly
Ø Implementation: mostly brute-force, but in practice extremely quick (seconds)

Ø 3: Try to build shapes-of-shapes, by hierarchical reconstruction
Ø Create a new set of points with the polyhedra origins from 2:, and repeat!
Ø Increase the complexity of shapes: use the Extended TRE algorithm for the second-level

of reconstruction, as SIMD considerations are less useful here

Ø 4: Generate efficient code by carefully inserting code prefetch instructions
Ø Code size vastly increases and exceed L1 cache, and loops often iterate over only few iterations
Ø Need to explicitly prefetch the code to be executed in advance to gain performance
Ø Codegen from polyhedra description is straightforwad for codelets

23

Experimental Results [1/4]

2600+ matrices from SuiteSparse with less than 10M nonzeros
We evaluate on 200 representative matrices

24

Experimental Results [2/4]

Experimental setup:

Core i7 8700k (3.7GHz)
Using hugepages
Compiled with ICC 18.03

Baselines: best of
- Vanilla SpMV C code
- Intel MKL IE

circle: single-level reconst.
triangle, square: hierarchical

Ø Performance increases in the majority of cases, but not all
ØComplex interplay between instruction count increase, memory traffic pattern

modifications, and SIMD vectorization

25

Experimental Results [3/4]

Ø Code prefetching is critical for performance esp. for large matrices
ØPrefetch inserted every 64B of instructions, inserted 4kB before code is used

Performance without
instruction prefetch insertion

Improvement from
instruction prefetch insertion alone

26

Experimental Results [4/4]

Ø Compression ratio: CSR footprint / size of data+code generated
ØBest compression is achieved with different codelets, different

objectives/trade-offs than for performance

Best compression achieved
(not necessarily best performance)

Generated code size versus
number of nonzeros

27

Take-Home Message
Sparse data structures using integer coordinates

can be represented as a union of Z-polyhedra
ØPerformance improved, removal of indirection arrays, better SIMD
ØMay achieve compaction over other sparse formats, e.g. CSR

Ø Quick synthesis time, but generated code can be very large

Ø General approach: works for sparse tensors
ØExtensive study of 200 sparse matrices from SuiteSparse
ØEarly results with neural network weight pruning (see paper)

Ø Active line of work:
ØDesign of NN weight pruning aware of polyhedra shape objectives
ØDesign new shape/polyhedron templates for better performance and

compaction

