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Overview

Data-specific compilation
Main idea: synthesize code that is specialized to a specific

sparse data structure, using polyhedra
» Irregular and sparse data structures are central in scientific computing and in

machine learning

» Graph processing, neural net inference after weight pruning, etc.

» Typical approach: encode the sparse structure in some format, and provide a

generic executor code to traverse the data

» Proposed approach: encode the sparse structure with polyhedra, and generate a
specialized executor code for that structure

» Tunable: target SIMD / performance, target compression / code size, etc.

» General: works for n-dimensional sparse data structures (e.g., sparse tensors)



Sparse Data Representations
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Computing on Sparse Structures

Compressed Sparse Row (CSR) code for sparse matrix vector multiply
for (1 = 0; 1 < nrows; i++)
for (j = pos[i]; j <= pos[i+l]; J++)
y[1i] += csr data[]j] * x[cols[]]];
» Code is generic for any sparse matrix
» For every nonzero of the matrix, performs 4 memory reads

» SIMD vectorization requires gather/scatter, code is not regular/polyhedral

Code specialized for one specific sparsity structure:

j.%-oooooo Hor (]=2; j<= 5; j++)
;-i....... y[1l] += csr data[]J-2] * x[]];
;E:::::: y[3] += csr data[5] * x[4];

13 eoeses y[4] += csr_data[6] * x[2];
B BT



Application Context, Pros and Cons

» Generating specialized code for one sparsity structure:

» Avoids the need for genericity: can remove indirection arrays / irregularity
» Makes the loop nests easier to vectorize

» Robust to any data changes, only the sparsity itself should not change

» May reduce footprint, but can lead to very large code size too
» Loses genericity: each sparse structure has a different executor program

» Some important use cases:
» Sparse Matrix Vector Multiply (especially iterative SpMV)
» Inference of some classes neural networks (especially after weight pruning)

» Sparse tensors
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But What is a Polyhedron?
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But What is a Polyhedron?

Example List of points Compact description
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T ®© 6 600 3 2 Polyhedron: described as the intersection
T ©© 06 0 00 of half-planes (e.g., i < 2), all points in
Pttt 3 3 the intersection are in the polyhedron
3 4
4 2 Dimensionality: 2
2D Integer points 4 3
gerp 44 In this work: model only polyhedra of

integer points

More complex shapes?
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But What is a Polyhedron?

Example List of points Compact description
A ]
J
"::"" 2 3 D:{[ij]:2<i<4and
W 3 3 3<j<4and
1 o oo . L
1 e 00000 3 4 j=iandj<i+1}
1 o000 00 4 4
Pttt Polyhedron: possibly many half planes
to describe it => affine inequalities
2D Integer points Inequalities may involve several

variables / dimensions
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But What is a Polyhedron?

Example List of points Compact description
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But what about holes in the shape?



But What is a Polyhedron?

Example List of points Compact description
it .
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|l e0 06000 4 4  |Intersected with an integer lattice:
— L:{[i,j] —>[xy]:x=2iandy =2} }
D contains 4 points, the lattice L
2D Integer points captures their exact coordinates
(stride of 2 here)

A polyhedron intersected with a lattice is a Z-Polyhedron
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But What is a Polyhedron?

Example List of points Compact description
it .
T ®e®¢ee 2 2 D:{[ijl:1<i<2and
1T © o & o 0 o 9 4 1SJS2}
1+ © & & o 0 o
1 oo @ 00 @ 42 . +. .
|l e0 06000 4 4  |Intersected with an integer lattice:
— L:{[i,j] —>[xy]:x=2iandy =2} }
D contains 4 points, the lattice L
2D Integer points captures their exact coordinates
(stride of 2 here)

Z-Polyhedra can have “holes”, needed for sparse structures
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Z-Polyhedra are Code, Too

Example List of points Compact description
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S(2i,2j); Il x = 2i, y = 2j
This code traverses all and only points in the
Z-polyhedron



Z-Polyhedra are Code, Too

Example List of points Compact description

it ]

T ®e®¢ee 2 2 D:{[ijl:1<i<2and

1T © @& & & o o 9 4 1S_| 2}

1+ © & & o & o

+ oo @ 00 0@ 42 . +. .

| o000 00 4 4 Intersected with ai’integer lattice:
—— L {[i]] /> [xyf:x=2iandy =2} }

2D Integer points for(i=1;i<=2;i+t)
for (j = 1; ] <= 2; j#)
S(2i,2j); Il x = 2i, y = 2]
This code traverses all and only points in the
Z-polyhedron



And What is a Sparse Structure?

Here, a sparse structure is simply a series of integer tuples

Example: a sparse matrix is represented by the tuple (i,j,data)

J, i cols[j] &(A_dataljl)

1: 0 0 0x00

2: 0 3 0x04

3 1 1 0x08

; 4: 1 4 0x0C
v 5 1 5 0x10
6: 2 2 0x14

7: 2 4 0x18

8: 2 5 0x1C

9: 3 0 0x20

10: 3 3 0x24

HB/nos1 matrix from SuiteSparse 11: 3 6 0x28

We handle sparse structures of arbitrary dimensionality,
this includes sparse tensors



Representing Integer Tuples as Z-Polyhedra

» A Z-Polyhedron models sets of integer tuples, with “holes”
» A sparse structure is a list of integer tuples, or points

» S0 we can represent a sparse structure as a union of Z-polyhedra!

» Target scenario: many points can be captured in a single polyhedron

» Performance objective: polyhedra should be easy to SIMD vectorize

» Challenges:

1. How to determine the shapes (polyhedron and lattice) that captures the
largest number of points, efficiently?

2. How to reach good performance for e.g. SpMV programs encoded as
polyhedra?
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Encoding Sparsity with Polyhedra

i cols[j]l &(A_datal[jl)
I 0 0 0x00
220 3 0x04
i 31 1 0x08
’ 4 1 4 0x0C
5 1 5 0x10
6: 2 2 0x14
7 2 4 0x18
8 2 5 0x1C
HB/Nos1 matrix from SuiteSparse 9 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

D1:{[ijkl:i=2and4<=j<=5andk=4j+8)

D2: {[ijk]:2<=i<=3andi=jand k= 16i— 12}

When modeling problems like SpMV, we consider the trace reorderable
That is, non-consecutive points in the original trace may be grouped together
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Complexity Trade-Offs [1/2]

> A Z-Polyhedron may use more dimensions than the tuple size

» Think tiling a 2D iteration space: you obtain a new 4D iteration space, but that
still describes exactly the same original set of 2D points

maxgy 2 3 4 5 6 7 8
pieces || 312 159 81 4 3 2 1
cycles | [11373] 11583 |9938| 35730 34116 39306 | 50371

LoC || 772 1004 | 671 195 368 165 101

» Using more variables/dimensions in the polyhedron (maxd) reduces
the number of polyhedra needed (pieces) to capture the full matrix

» Leads to better compaction (LoC)

» But it does not necessarily lead to better performance
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Complexity Trade-Offs [2/2]

» Complex sparse structures need many polyhedra to capture them

> This sparse matrix, HBlcan_1072is N \Y‘{“ R
reconstructed with 870 polyhedra, of up \\‘\»\\‘\ 5. "'-i e
o SN AN
to 8 dimensions NSRS NN AN
e Y
» Code size is directly related to the R §\\:§j ; ;
Lot NN
number of polyhedra needed N SN\
A D
N . 3N

» In this work, we design a series of algorithms that trade-off the
number of polyhedra needed versus their “complexity”
» Try simple shape first: “rectangles”, with regular strides (SIMD-friendly)

» Try more complex shapes afterwards (skewed ones, with many dimensions)




High-Level Procedure

» 1: obtain a series of integer tuples describing the sparse structure coordinates

» Simply scan the structure, printing the coordinates

» 2:Find simple, “rectangular” shapes by mining the trace

» Single-level codelets: prototype shapes are chosen to be SIMD friendly
» Implementation: mostly brute-force, but in practice extremely quick (seconds)

» 3: Try to build shapes-of-shapes, by hierarchical reconstruction
» Create a new set of points with the polyhedra origins from 2:, and repeat!
» Increase the complexity of shapes: use the Extended TRE algorithm for the second-level
of reconstruction, as SIMD considerations are less useful here
» 4: Generate efficient code by carefully inserting code prefetch instructions

» Code size vastly increases and exceed L1 cache, and loops often iterate over only few iterations
» Need to explicitly prefetch the code to be executed in advance to gain performance

» Codegen from polyhedra description is straightforwad for codelets
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0.2

Number of nonzero elements in the matrix

2600+ matrices from SuiteSparse with less than 10M nonzeros
We evaluate on 200 representative matrices

23



Experimental Results [2/4]
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Experimental setup:

Core i7 8700k (3.7GHz)
Using hugepages
Compiled with ICC 18.03

Baselines: best of
- Vanilla SpMV C code
- Intel MKL IE

circle: single-level reconst.
triangle, square: hierarchical

» Performance increases in the majority of cases, but not all

» Complex interplay between instruction count increase, memory traffic pattern

modifications, and SIMD vectorization
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Experimental Results [3/4]
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» Code prefetching is critical for performance esp. for large matrices

» Prefetch inserted every 64B of instructions, inserted 4kB before code is used
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Experimental Results [4/4]

N
o
|
o

y
107 »
181 s ® £ H5y 10
107 LI § 100 .:?;% B EIT
" = 2 . ,;'gﬁ/;; ¥ = x/32
1.4 4 [u] E Lot T e X/64
= B 10° e x/128
o 1.21 4 8 ] < R S o x/256
g o o o awooums D‘:‘AA I b AED 2 104 '
5 10f+—=—======—=————— E) - -AA-E-EPD ————— -uﬂﬂg —————— 8
g ’ %RA‘DDE‘EAD’%Q' D‘:‘! g 103
g‘ 0.8 oAl Dﬁ&u N @ Aﬁ 4 Jé
A
S SAMTTA ol B $ 102 ]
2 A4 .8 o
AA A [}
0.6 e 2 % oo £
© AL o4 c 10!
° Al ) A 0
O
o S 100
0.4 T T T T T T T T T T T T T T
100 10! 102 103 104 105 106 107 102 103 104 10° 106 107
Number of nonzero elements in the matrix Number of nonzero elements in the matrix
Best compression achieved Generated code size versus
(not necessarily best performance) number of nonzeros

» Compression ratio: CSR footprint / size of data+code generated

> Best compression is achieved with different codelets, different
objectivesitrade-offs than for performance



Take-Home Message

Sparse data structures using integer coordinates

can be represented as a union of Z-polyhedra
» Performance improved, removal of indirection arrays, better SIMD

» May achieve compaction over other sparse formats, e.g. CSR

» Quick synthesis time, but generated code can be very large

» General approach: works for sparse tensors

» Extensive study of 200 sparse matrices from SuiteSparse
» Early results with neural network weight pruning (see paper)

> Active line of work:

» Design of NN weight pruning aware of polyhedra shape objectives

» Design new shape/polyhedron templates for better performance and
compaction
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