Generating Piecewise-Regular Code
from Irreqular Structures

Travis Augustine! Jana Sarma' Louis-Noél Pouchet! Gabriel Rodriguez?

' Colorado State University, USA
2 Universidade da Coruia, Spain

ACM SIGPLAN Conference on Programming Language Design and Implementation
at 2019 ACM Federated Computing Research Conference
June 25, 2019

Funded in part by
& el >:< onversDiE D ol RS

University

Overview

Data-specific compilation
Main idea: synthesize code that is specialized to a specific

sparse data structure, using polyhedra
» Irregular and sparse data structures are central in scientific computing and in

machine learning

» Graph processing, neural net inference after weight pruning, etc.

» Typical approach: encode the sparse structure in some format, and provide a

generic executor code to traverse the data

» Proposed approach: encode the sparse structure with polyhedra, and generate a
specialized executor code for that structure

» Tunable: target SIMD / performance, target compression / code size, etc.

» General: works for n-dimensional sparse data structures (e.g., sparse tensors)

Sparse Data Representations

nnz
A
S coO Values ‘Al [SIPIAIRISIE] [PIOIPIUILIAITII [O]N]
P Al IR Colindex [1]16/2]0]5/7]14/5/216/8/0/315(7]9]2[4]8]
- Rowindex 010/ 112[2]23[4155/516(6(666/71717
P U I A T R Values Al [SIPIAIRISIE] [PIO/PIUILIAITII [OIN]
| O 'N ol Index (1] 6]/2/0/5]7]4]/5]/2]6/8]/0[3[/5[/7]/9/2[4]8]
'012/3]/6][7[8]1116/119
p Row Offset
~ % m+1
Values Indexes Values Indexes m: 8
A 0/0|0 1|6 A 1/6 Values 'RIOILJIAITIN n:1_0
S 0/0/0/0| |2 S 0 2 Colindex [7[8[5[7/9]8]|| nnz: 19
PIAIRI0 0 0|57 PLA 015 Rowindex [2[5]6 16167]| nnz: 24%
S0/ 0/0/0 4 S| 0 4 min: 1
E/I0 0/ 00 [5 E O 5 :
PIO 00| [2]6 P 2.6 & OO ELL/COO cut-off: max: 5
PUILIAIT (0 3 579 P U 03 9, < k=2 mu: 2.4
I TOINIO /O] |24 | 1O 214 sigma: 1.3

Computing on Sparse Structures

Compressed Sparse Row (CSR) code for sparse matrix vector multiply
for (1 = 0; 1 < nrows; i++)
for (j = pos[i]; j <= pos[i+l]; J++)
y[1i] += csr data[]j] * x[cols[]]];
» Code is generic for any sparse matrix
» For every nonzero of the matrix, performs 4 memory reads

» SIMD vectorization requires gather/scatter, code is not regular/polyhedral

Code specialized for one specific sparsity structure:

j.%-oooooo Hor (]=2; j<= 5; j++)
;-i....... y[1l] += csr data[]J-2] * x[]];
;E:::::: y[3] += csr data[5] * x[4];

13 eoeses y[4] += csr_data[6] * x[2];
B BT

Application Context, Pros and Cons

» Generating specialized code for one sparsity structure:

» Avoids the need for genericity: can remove indirection arrays / irregularity
» Makes the loop nests easier to vectorize

» Robust to any data changes, only the sparsity itself should not change

» May reduce footprint, but can lead to very large code size too
» Loses genericity: each sparse structure has a different executor program

» Some important use cases:
» Sparse Matrix Vector Multiply (especially iterative SpMV)
» Inference of some classes neural networks (especially after weight pruning)

» Sparse tensors

But What is a Polyhedron?

Example

'y

—
| | | | |

Grid of 2D Integer points

But What is a Polyhedron?

List of points

Example

2D Integer points

]

2

L= - N~ . 2 75 I SC B N B (N

2

F N SC I \° I SR SC R S R~ N S

Compact description

But What is a Polyhedron?

Example

List of points

]

\

o0

2D Integer points

i

>

L= - N~ . 2 75 I SC B N B (N

2

F N SC I \° I SR SC R S R~ N S

Compact description

But What is a Polyhedron?

Example List of points Compact description
4]
J
1 e 00000 2 2 D:{[ij]:2<i<4and
+ 6 o 6 o o o 2 3 2SJS4}
1 o 0o 00 00 -
T ®© 6 600 3 2 Polyhedron: described as the intersection
T ©© 06 0 00 of half-planes (e.g., i < 2), all points in
Pttt 3 3 the intersection are in the polyhedron
3 4
4 2 Dimensionality: 2
2D Integer points 4 3
gerp 44 In this work: model only polyhedra of

integer points

But What is a Polyhedron?

Example List of points Compact description
4]
J
1 e 00000 2 2 D:{[ij]:2<i<4and
+ 6 o 6 o o o 2 3 2SJS4}
1 o 0o 00 00 -
T ®© 6 600 3 2 Polyhedron: described as the intersection
T ©© 06 0 00 of half-planes (e.g., i < 2), all points in
Pttt 3 3 the intersection are in the polyhedron
3 4
4 2 Dimensionality: 2
2D Integer points 4 3
gerp 44 In this work: model only polyhedra of

integer points

More complex shapes?

10

But What is a Polyhedron?

Example List of points Compact description
A]
J
"::"" 2 3 D:{[ij]:2<i<4and
W 3 3 3<j<4and
1 o oo . L
1 e 00000 3 4 j=iandj<i+1}
1 o000 00 4 4
Pttt Polyhedron: possibly many half planes
to describe it => affine inequalities
2D Integer points Inequalities may involve several

variables / dimensions

11

But What is a Polyhedron?

Example List of points Compact description
A i
J
__...... 22 D: ". <'_ and
1T © o & o 0 o
2 4 SIS
1+ © & & o & o
+ © o & & o o 4 2
1l o000 0 @ 4 4 Still describes 9 points!!
————

2D Integer points

But what about holes in the shape?

But What is a Polyhedron?

Example List of points Compact description
it .
T ®e®¢ee 2 2 D:{[ijl:1<i<2and
1T © o & o 0 o 9 4 1SJS2}
1+ © & & o 0 o
1 oo @ 00 @ 42 . +. .
|l e0 06000 4 4 |Intersected with an integer lattice:
— L:{[i,j] —>[xy]:x=2iandy =2} }
D contains 4 points, the lattice L
2D Integer points captures their exact coordinates
(stride of 2 here)

A polyhedron intersected with a lattice is a Z-Polyhedron

13

But What is a Polyhedron?

Example List of points Compact description
it .
T ®e®¢ee 2 2 D:{[ijl:1<i<2and
1T © o & o 0 o 9 4 1SJS2}
1+ © & & o 0 o
1 oo @ 00 @ 42 . +. .
|l e0 06000 4 4 |Intersected with an integer lattice:
— L:{[i,j] —>[xy]:x=2iandy =2} }
D contains 4 points, the lattice L
2D Integer points captures their exact coordinates
(stride of 2 here)

Z-Polyhedra can have “holes”, needed for sparse structures

14

Z-Polyhedra are Code, Too

Example List of points Compact description
it]
T ®e®¢ee 2 2 D:{[ij]:1<i<2and
+-o-jo—o—-0-0-@ 2 4 1Sj§2}
1+ © & & o 0 o
1 0-10-0-0/-0—@ 42 . +. .
|l e0 06000 4 4 |Intersected with an integer lattice:
—— L:{[ij] —>[xy]:x=2iandy=2j}
2D Integer points for (i=1;i<=2;i++)

for (j =1;] <=2; j#t)
S(2i,2j); Il x = 2i, y = 2j
This code traverses all and only points in the
Z-polyhedron

Z-Polyhedra are Code, Too

Example List of points Compact description

it]

T ®e®¢ee 2 2 D:{[ijl:1<i<2and

1T © @& & & o o 9 4 1S_| 2}

1+ © & & o & o

+ oo @ 00 0@ 42 . +. .

| o000 00 4 4 Intersected with ai’integer lattice:
—— L {[i]] /> [xyf:x=2iandy =2} }

2D Integer points for(i=1;i<=2;i+t)
for (j = 1;] <= 2; j#)
S(2i,2j); Il x = 2i, y = 2]
This code traverses all and only points in the
Z-polyhedron

And What is a Sparse Structure?

Here, a sparse structure is simply a series of integer tuples

Example: a sparse matrix is represented by the tuple (i,j,data)

J, i cols[j] &(A_dataljl)

1: 0 0 0x00

2: 0 3 0x04

3 1 1 0x08

; 4: 1 4 0x0C
v 5 1 5 0x10
6: 2 2 0x14

7: 2 4 0x18

8: 2 5 0x1C

9: 3 0 0x20

10: 3 3 0x24

HB/nos1 matrix from SuiteSparse 11: 3 6 0x28

We handle sparse structures of arbitrary dimensionality,
this includes sparse tensors

Representing Integer Tuples as Z-Polyhedra

» A Z-Polyhedron models sets of integer tuples, with “holes”
» A sparse structure is a list of integer tuples, or points

» S0 we can represent a sparse structure as a union of Z-polyhedra!

» Target scenario: many points can be captured in a single polyhedron

» Performance objective: polyhedra should be easy to SIMD vectorize

» Challenges:

1. How to determine the shapes (polyhedron and lattice) that captures the
largest number of points, efficiently?

2. How to reach good performance for e.g. SpMV programs encoded as
polyhedra?

18

Encoding Sparsity with Polyhedra

i cols[j]l &(A_datal[jl)
I 0 0 0x00
220 3 0x04
i 31 1 0x08
’ 4 1 4 0x0C
5 1 5 0x10
6: 2 2 0x14
7 2 4 0x18
8 2 5 0x1C
HB/Nos1 matrix from SuiteSparse 9 3 0 0x20
10: 3 3 0x24
11: 3 6 0x28

D1:{[ijkl:i=2and4<=j<=5andk=4j+8)

D2: {[ijk]:2<=i<=3andi=jand k= 16i— 12}

When modeling problems like SpMV, we consider the trace reorderable
That is, non-consecutive points in the original trace may be grouped together

19

Complexity Trade-Offs [1/2]

> A Z-Polyhedron may use more dimensions than the tuple size

» Think tiling a 2D iteration space: you obtain a new 4D iteration space, but that
still describes exactly the same original set of 2D points

maxgy 2 3 4 5 6 7 8
pieces || 312 159 81 4 3 2 1
cycles | [11373] 11583 |9938| 35730 34116 39306 | 50371

LoC || 772 1004 | 671 195 368 165 101

» Using more variables/dimensions in the polyhedron (maxd) reduces
the number of polyhedra needed (pieces) to capture the full matrix

» Leads to better compaction (LoC)

» But it does not necessarily lead to better performance

20

Complexity Trade-Offs [2/2]

» Complex sparse structures need many polyhedra to capture them

> This sparse matrix, HBlcan_1072is N \Y‘{“ R
reconstructed with 870 polyhedra, of up \\‘\»\\‘\ 5. "'-i e
o SN AN
to 8 dimensions NSRS NN AN
e Y
» Code size is directly related to the R §\\:§j ; ;
Lot NN
number of polyhedra needed N SN\
A D
N . 3N

» In this work, we design a series of algorithms that trade-off the
number of polyhedra needed versus their “complexity”
» Try simple shape first: “rectangles”, with regular strides (SIMD-friendly)

» Try more complex shapes afterwards (skewed ones, with many dimensions)

High-Level Procedure

» 1: obtain a series of integer tuples describing the sparse structure coordinates

» Simply scan the structure, printing the coordinates

» 2:Find simple, “rectangular” shapes by mining the trace

» Single-level codelets: prototype shapes are chosen to be SIMD friendly
» Implementation: mostly brute-force, but in practice extremely quick (seconds)

» 3: Try to build shapes-of-shapes, by hierarchical reconstruction
» Create a new set of points with the polyhedra origins from 2:, and repeat!
» Increase the complexity of shapes: use the Extended TRE algorithm for the second-level
of reconstruction, as SIMD considerations are less useful here
» 4: Generate efficient code by carefully inserting code prefetch instructions

» Code size vastly increases and exceed L1 cache, and loops often iterate over only few iterations
» Need to explicitly prefetch the code to be executed in advance to gain performance

» Codegen from polyhedra description is straightforwad for codelets

22

Exp

0 -h

0.8

0.6

0.4 -H

Percentage of points included in micro-codelets

0.2

Number of nonzero elements in the matrix

2600+ matrices from SuiteSparse with less than 10M nonzeros
We evaluate on 200 representative matrices

23

Experimental Results [2/4]

|
4.0 A © !
3.5 1 A0° !
3.0 + o 40 :
5 A Qo L0 :
.5 ° ;bchA ° %00A :
2.0 1 ¢ PO '
’ 0° % mo® ° :
S ° OCIB% A&?Jq(a%gﬂoo I
° ng % & z°0 g o{; o
$15 o ° Lo o A @ha g:?
3 @ q° B 28 o0 © pom ofmp LA
@ o % 08%0 ¢ 8 © °%e © ° ol 93
o ° (o} c;ﬁldll (6]
e o A s _
1.0 Qb%'dl’-o °
A &
R oo A
, A
I A
: &
I
0.5 T T T T LR | T T T T T T ""'I"I T
100 101 102 103 10% 10° 108 10’

Number of nonzero elements in the matrix

Experimental setup:

Core i7 8700k (3.7GHz)
Using hugepages
Compiled with ICC 18.03

Baselines: best of
- Vanilla SpMV C code
- Intel MKL IE

circle: single-level reconst.
triangle, square: hierarchical

» Performance increases in the majority of cases, but not all

» Complex interplay between instruction count increase, memory traffic pattern

modifications, and SIMD vectorization

24

Experimental Results [3/4]

4.5 A]

4.0 - ° o i last-level cache size (12 MB) 181 ° i
zg: o “': °, E/ 1.6 L °) E .
2.5 4 '\ 0o o o o i R ."‘.. .:o
2.0 3‘\" e o ° i 141 H I :.::-':.
&% %% o i LY T
§ ° &R %04 © 6 o' Aa §12 & : ':'o..' o‘
o 10 _____________:_—_;.?._'_'_:__:—_:.ﬁ'—l:_'___‘:_: _____ 2 ° ".. 'i '. ° °
] ..'0'...5:0 o ° wo A A 10 ___k?'_‘_;; ________ _n____i_____'___'____:___..._
] '.":i'.:c:':'. . AA ?..'O \.O' i ° °
0.5 | I e .0° o ¢ :
°o | 0.8 ° i °
106 107 10° 106 107 10°
Working set size in bytes Working set size in bytes
Performance without Improvement from
instruction prefetch insertion instruction prefetch insertion alone

» Code prefetching is critical for performance esp. for large matrices

» Prefetch inserted every 64B of instructions, inserted 4kB before code is used

25

Experimental Results [4/4]

N
o
|
o

y
107 »
181 s ® £ H5y 10
107 LI § 100 .:?;% B EIT
" = 2 . ,;'gﬁ/;; ¥ = x/32
1.4 4 [u] E Lot T e X/64
= B 10° e x/128
o 1.21 4 8] < R S o x/256
g o o o awooums D‘:‘AA I b AED 2 104 '
5 10f+—=—======—=————— E) - -AA-E-EPD ————— -uﬂﬂg —————— 8
g ’ %RA‘DDE‘EAD’%Q' D‘:‘! g 103
g‘ 0.8 oAl Dﬁ&u N @ Aﬁ 4 Jé
A
S SAMTTA ol B $ 102]
2 A4 .8 o
AA A [}
0.6 e 2 % oo £
© AL o4 c 10!
° Al) A 0
O
o S 100
0.4 T T T T T T T T T T T T T T
100 10! 102 103 104 105 106 107 102 103 104 10° 106 107
Number of nonzero elements in the matrix Number of nonzero elements in the matrix
Best compression achieved Generated code size versus
(not necessarily best performance) number of nonzeros

» Compression ratio: CSR footprint / size of data+code generated

> Best compression is achieved with different codelets, different
objectivesitrade-offs than for performance

Take-Home Message

Sparse data structures using integer coordinates

can be represented as a union of Z-polyhedra
» Performance improved, removal of indirection arrays, better SIMD

» May achieve compaction over other sparse formats, e.g. CSR

» Quick synthesis time, but generated code can be very large

» General approach: works for sparse tensors

» Extensive study of 200 sparse matrices from SuiteSparse
» Early results with neural network weight pruning (see paper)

> Active line of work:

» Design of NN weight pruning aware of polyhedra shape objectives

» Design new shape/polyhedron templates for better performance and
compaction

27

