
Polyhedral Scheduling and Transformations

Louis-Noël Pouchet

CS & ECE
Colorado State University

February 23, 2020

PPoPP’20 Tutorial

: PPoPP’20

Scheduling

CSU 2

Affine Scheduling: PPoPP’20

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule ΘR is an affine form on
the outer loop iterators~xS and the global parameters~n. It is written:

Θ
S(~xS) = TS

~xS
~n
1

 , TS ∈Kp×dim(~xS)+dim(~n)+1

I A schedule assigns a timestamp to each executed instance of a
statement

I If T is a vector, then Θ is a one-dimensional schedule
I If T is a matrix, then Θ is a multidimensional schedule

I Question: does it translate to sequential loops?

CSU 3

Affine Scheduling: PPoPP’20

Legal Program Transformation

Definition (Precedence condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS are legal schedules if ∀〈~xR,~xS〉 ∈DR,S:

ΘR(~xR)≺ΘS(~xS)

≺ denotes the lexicographic ordering.

(a1, . . . ,an)≺ (b1, . . . ,bm) iff ∃i, 1≤ i≤ min(n,m) s.t. (a1, . . . ,ai−1) = (b1, . . . ,bi−1)

and ai < bi

CSU 4

Affine Scheduling: PPoPP’20

Scheduling in the Polyhedral Model

Constraints:
I The schedule must respect the precedence condition, for all dependent

instances
I Dependence constraints can be turned into constraints on the solution

set

Scheduling:
I Among all possibilities, one has to be picked
I Optimal solution requires to consider all legal possible schedules

I Question: is this always true?

CSU 5

Affine Scheduling: PPoPP’20

One-Dimensional Affine Schedules

For now, we focus on 1-d schedules

Example

for (i = 1; i < N; ++i)
A[i] = A[i - 1] + A[i] + A[i + 1];

I Simple program: 1 loop, 1 polyhedral statement
I 2 dependences:

I RAW: A[i]→ A[i - 1]
I WAR: A[i + 1]→ A[i]

CSU 6

Affine Scheduling: PPoPP’20

Checking the Legality of a Schedule
Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .
eq

iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .
eq

iS
i′S
n
1


1 Θ = i
2 Θ =−i

Solution: check for the emptiness of the polyhedron

P :
[

D
iS � i′S

]
.


iS
i′S
n
1


where:
I iS � i′S gets the consumer instances scheduled after the producer ones
I For Θ =−i, it is −iS �−i′S, which is non-empty

CSU 7

Affine Scheduling: PPoPP’20

Checking the Legality of a Schedule
Exercise: given the dependence polyhedra, check if a schedule is legal

D1 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .
eq

iS
i′S
n
1

 D2 :


1 1 0 0 −1
1 −1 0 1 −1
1 0 1 0 1
1 0 −1 1 −1
0 1 −1 0 1
1 −1 1 0 −1

 .
eq

iS
i′S
n
1


1 Θ = i
2 Θ =−i

Solution: check for the emptiness of the polyhedron

P :
[

D
iS � i′S

]
.


iS
i′S
n
1


where:
I iS � i′S gets the consumer instances scheduled after the producer ones
I For Θ =−i, it is −iS �−i′S, which is non-empty

CSU 7

Affine Scheduling: PPoPP’20

A (Naive) Scheduling Approach

I Pick a schedule for the program statements
I Check if it respects all dependences

This is called filtering

Limitations:
I How to use this in combination of an objective function?
I The density of legal 1-d affine schedules is low:

matmult locality fir h264 crout

~i-Bounds −1,1 −1,1 0,1 −1,1 −3,3
c-Bounds −1,1 −1,1 0,3 0,4 −3,3
#Sched. 1.9×104 5.9×104 1.2×107 1.8×108 2.6×1015

⇓
#Legal 6561 912 792 360 798

CSU 8

Affine Scheduling: PPoPP’20

Objectives for a Good Scheduling Algorithm

I Build a legal schedule!
I Embed some properties in this legal schedule

I latency: minimize the time of the last iteration
I delay: minimize the time between the first and last iteration
I parallelism / placement
I permutability (for tiling)
I ...

A possible "simple" two-step approach:
I Find the solution set of all legal affine schedules
I Find an ILP/PIP formulation for the objective function(s)

CSU 9

Affine Scheduling: PPoPP’20

The Precedence Constraint (Again!)

Precedence constraint adapted to 1-d schedules:

Definition (Causality condition for schedules)

Given DR,S, ΘR and ΘS are legal iff for each pair of instances in dependence:

Θ
R(~xR)< Θ

S(~xS)

Equivalently: ∆R,S = Θ
S(~xS)−Θ

R(~xR)−1≥ 0

I All functions ∆R,S which are non-negative over the dependence
polyhedron represent legal schedules

I For the instances which are not in dependence, we don’t care
I First step: how to get all non-negative functions over a polyhedron?

CSU 10

Affine Scheduling: PPoPP’20

Affine Form of the Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine
function f (~x) is non-negative everywhere in D iff it is a positive affine
combination:

f (~x) = λ0 +~λ
T(A~x+~b), with λ0 ≥ 0 and~λ≥~0

λ0 and ~λT are called the Farkas multipliers.

CSU 11

Affine Scheduling: PPoPP’20

The Farkas Lemma: Example

I Function: f (x) = ax+b
I Domain of x: {1≤ x≤ 3}→ x−1≥ 0, −x+3≥ 0
I Farkas lemma: f (x)≥ 0⇔ f (x) = λ0 +λ1(x−1)+λ2(−x+3)

The system to solve:
λ1 − λ2 = a

λ0 − λ1 + 3λ2 = b
λ0 ≥ 0

λ1 ≥ 0
λ2 ≥ 0

CSU 12

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

Property (Causality condition for schedules)

Given RδS, ΘR and ΘS are legal iff for each pair of instances in dependence:

Θ
R(~xR)< Θ

S(~xS)

Equivalently: ∆R,S = Θ
S(~xS)−Θ

R(~xR)−1≥ 0

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A~x+~b≥~0. Then any affine function f (~x)
is non-negative everywhere in D iff it is a positive affine combination:

f (~x) = λ0 +~λ
T(A~x+~b), with λ0 ≥ 0 and~λ≥~0.

λ0 and ~λT are called the Farkas multipliers.

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Many to one

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

Θ
S(~xS)−Θ

R(~xR)−1 = λ0 +~λ
T
(

DR,S

(
~xR

~xS

)
+~dR,S

)
≥ 0


DRδS iR : λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : λD1,7 −λD1,8

n : λD1,4 +λD1,6 +λD1,8

1 : λD1,0

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

Θ
S(~xS)−Θ

R(~xR)−1 = λ0 +~λ
T
(

DR,S

(
~xR
~xS

)
+~dR,S

)
≥ 0


DRδS iR : −t1R = λD1,1 −λD1,2 +λD1,3 −λD1,4

iS : t1S = −λD1,1 +λD1,2 +λD1,5 −λD1,6

jS : t2S = λD1,7 −λD1,8

n : t3S − t2R = λD1,4 +λD1,6 +λD1,8

1 : t4S − t3R −1 = λD1,0

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

I Solve the constraint system
I Use (purpose-optimized) Fourier-Motzkin projection algorithm

I Reduce redundancy
I Detect implicit equalities

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

- Identification

- Projection

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example: Semantics Preservation (1-D)

Valid

Transformation

Coefficients

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

- Farkas Lemma

Valid

Farkas

Multipliers

Bijection

- Identification

- Projection

I One point in the space⇔ one set of legal schedules
w.r.t. the dependences

CSU 13

Affine Scheduling: One-dimensional Schedules PPoPP’20

Scheduling Algorithm for Multiple Dependences

Algorithm
I Compute the schedule constraints for each dependence
I Intersect all sets of constraints
I Output is a convex solution set of all legal one-dimensional schedules

I Computation is fast, but requires eliminating variables in a system of
inequalities: projection

I Can be computed as soon as the dependence polyhedra are known

CSU 14

Affine Scheduling: One-dimensional Schedules PPoPP’20

Objective Function

Idea: bound the latency of the schedule and minimize this bound

Theorem (Schedule latency bound)

If all domains are bounded, and if there exists at least one 1-d schedule Θ,
then there exists at least one affine form in the structure parameters:

L =~u.~n+w

such that:
∀~xR, L≥ΘR(~xR)

I Objective function: min{~u,w |~u.~n+w−Θ≥ 0}
I Subject to Θ is a legal schedule, and θi ≥ 0
I In many cases, it is equivalent to take the lexicosmallest point in the

polytope of non-negative legal schedules

CSU 15

Affine Scheduling: One-dimensional Schedules PPoPP’20

Example

min{~u,w |~u.~n+w−Θ≥ 0} : ΘR = 0, ΘS = k+1

Example

parfor (i = 0; i < N; ++i)
parfor (j = 0; j < N; ++j)
C[i][j] = 0;

for (k = 1; k < N + 1; ++k)
parfor (i = 0; i < N; ++i)
parfor (j = 0; j < N; ++j)
C[i][j] += A[i][k-1] + B[k-1][j];

CSU 16

Affine Scheduling: One-dimensional Schedules PPoPP’20

Limitations of One-dimensional Schedules

I Not all programs have a legal one-dimensional schedule
I Question: does this program have a 1-d schedule?

Example

for (i = 1; i < N - 1; ++i)
for (j = 1; j < N - 1; ++j)
A[i][j] = A[i-1][j-1] + A[i+1][j] + A[i][j+1];

I Not all compositions of transformation are possible
I Interchange in inner-loops
I Fusion / distribution of inner-loops

CSU 17

Affine Scheduling: One-dimensional Schedules PPoPP’20

Multidimensional Scheduling

CSU 18

Affine Scheduling: Multidimensional Scheduling PPoPP’20

Multidimensional Scheduling

I Some program does not have a legal 1-d schedule
I It means, it’s not possible to enforce the precedence condition for all

dependences

Example

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)
s += s;

I Intuition: multidimensional time means nested time loops
I The precedence constraint needs to be adapted to multidimensional

time

CSU 19

Affine Scheduling: Multidimensional Scheduling PPoPP’20

Dependence Satisfaction

Definition (Strong dependence satisfaction)

Given DR,S, the dependence is strongly satisfied at schedule level k if

∀〈~xR,~xS〉 ∈DR,S, ΘS
k(~xS)−ΘR

k (~xR)≥ 1

Definition (Weak dependence satisfaction)

Given DR,S, the dependence is weakly satisfied at dimension k if

∀〈~xR,~xS〉 ∈DR,S, Θ
S
k(~xS)−Θ

R
k (~xR)≥ 0

∃〈~xR,~xS〉 ∈DR,S, Θ
S
k(~xS) = Θ

R
k (~xR)

CSU 20

Affine Scheduling: Multidimensional Scheduling PPoPP’20

Program Legality and Existence Results

I All dependence must be strongly satisfied for the program to be correct
I Once a dependence is strongly satisfied at level k, it does not

contribute to the constraints of level k+ i

I Unlike with 1-d schedules, it is always possible to build a legal
multidimensional schedule for a SCoP [Feautrier]

Theorem (Existence of an affine schedule)

Every static control program has a multdidimensional affine schedule

CSU 21

Affine Scheduling: Multidimensional Scheduling PPoPP’20

Reformulation of the Precedence Condition
I We introduce variable δ

DR,S
1 to model the dependence satisfaction

I Considering the first row of the scheduling matrices, to preserve the
precedence relation we have:

∀DR,S, ∀〈~xR,~xS〉 ∈DR,S, ΘS
1(~xS)−ΘR

1 (~xR)≥ δ
DR,S
1

δ
DR,S
1 ∈ {0,1}

Lemma (Semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if:

∀DR,S, ∃p ∈ {1, . . . ,m}, δ
DR,S
p = 1

∧ ∀j < p, δ
DR,S
j = 0

∧ ∀j≤ p,∀〈~xR,~xS〉 ∈DR,S, Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
j

CSU 22

Affine Scheduling: Multidimensional Scheduling PPoPP’20

Space of All Affine Schedules

Objective:
I Design an ILP which operates on all scheduling coefficients
I Easier optimality reasoning: the space contains all schedules (hence

necesarily the optimal one)
I Examples: maximal fusion, maximal coarse-grain parallelism, best

locality, etc.

idea:
I Combine all coefficients of all rows of the scheduling function into a

single solution set
I Find a convex encoding for the lexicopositivity of dependence

satisfaction
I A dependence must be weakly satisfied until it is strongly satisfied
I Once it is strongly satisfied, it must not constrain subsequent levels

CSU 23

Affine Scheduling: Multidimensional Scheduling PPoPP’20

Schedule Lower Bound

Idea:
I Bound the schedule latency with a lower bound which does not prevent

to find all solutions
I Intuitively:

I ΘS(~xS)−ΘR(~xR)≥ δ if the dependence has not been strongly satisfied
I ΘS(~xS)−ΘR(~xR)≥−∞ if it has

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

max
(
Θ

S
k(~xS)−Θ

R
k (~xR)

)
>−K.~n−K

CSU 24

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Space of Semantics-Preserving Affine Schedules

All unique bounded

affine multidimensional schedules

All unique semantics-preserving

affine multidimensional schedules

1 point ↔ 1 unique semantically equivalent program
(up to affine iteration reordering)

CSU 25

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Semantics Preservation

Definition (Causality condition)

Given ΘR a schedule for the instances of R, ΘS a schedule for the instances
of S. ΘR and ΘS preserve the dependence DR,S if ∀〈~xR,~xS〉 ∈DR,S:

Θ
R(~xR)≺Θ

S(~xS)

≺ denotes the lexicographic ordering.

(a1, . . . ,an)≺ (b1, . . . ,bm) iff ∃i, 1≤ i≤ min(n,m) s.t. (a1, . . . ,ai−1) = (b1, . . . ,bi−1)

and ai < bi

CSU 26

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0

I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

∀~xR,~xS, Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

CSU 27

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

∀~xR,~xS, Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

CSU 27

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

∀~xR,~xS, Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

CSU 27

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Lexico-positivity of Dependence Satisfaction

I ΘR(~xR)≺ΘS(~xS) is equivalently written ΘS(~xS)−ΘR(~xR)�~0
I Considering the row p of the scheduling matrices:

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δp

I δp ≥ 1 implies no constraints on δk, k > p
I δp ≥ 0 is required if 6 ∃k < p, δk ≥ 1

I Schedule lower bound:

Lemma (Schedule lower bound)

Given ΘR
k , ΘS

k such that each coefficient value is bounded in [x,y]. Then
there exists K ∈ Z such that:

∀~xR,~xS, Θ
S
k(~xS)−Θ

R
k (~xR)>−K.~n−K

CSU 27

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

CSU 28

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

CSU 28

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p

−
p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

CSU 28

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)≥ δ

DR,S
p −

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

CSU 28

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)−δ

DR,S
p +

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)≥ 0

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]

CSU 28

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ΘR,ΘS . . . of dimension m, the program
semantics is preserved if the three following conditions hold:

(i) ∀DR,S, δ
DR,S
p ∈ {0,1}

(ii) ∀DR,S,
m

∑
p=1

δ
DR,S
p = 1

(iii) ∀DR,S, ∀p ∈ {1, . . . ,m}, ∀〈~xR,~xS〉 ∈DR,S,

Θ
S
p(~xS)−Θ

R
p (~xR)−δ

DR,S
p +

p−1

∑
k=1

δ
DR,S
k .(K.~n+K)≥ 0

→ Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]

→ Bounded coefficients required [Vasilache,07]
CSU 28

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Maximal Fine-Grain Parallelism

Objectives:
I Have as few dimensions as possible carrying a dependence

I For dimension k ∈ p..1:

min ∑
DR,S

δ
DR,S
k

I We use lexicographic optimization

CSU 29

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Key Observations

Is all of this really necessary?

I We have encoded one objective per row of Θ

I Question: do we need to solve this large ILP/LP?

CSU 30

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Feautrier’s Greedy Algorithm

Main idea:
1 Start at row 1 of Θ

2 Build the set of legal one-dimensional schedules
3 Maximize the number of dependences strongly solved (maxδi)
4 Remove strongly solved dependences from P
5 Goto 1

This is a row-by-row decomposition of the scheduling problem

CSU 31

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Key Properties of Feautrier’s Algorithm

I It terminates
I It finds "optimal" fine-grain parallelism

I Granularity of dependence satisfaction: all-or-nothing

Example

for (i = 0; i < 2 * N; ++i) A[i] = A[2 * N - i];

CSU 32

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Key Observations

Is all of this really necessary?

I Question: do we need to consider all statements at once?

I Insight: the PDG gives structural information about dependences
I Decomposition of the PDG into strongly-connected components

CSU 33

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Feautrier’s Scheduler

CSU 34

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

More Observations

I Some problems may be decomposed without loss of optimality
I The PDG gives extra information about further problem decomposition

Still, is all of this really necessary?

I Question: can we use additional knowledge about dependences?

I Uniform, non-uniform and parametric dependences

CSU 35

Affine Scheduling: Space of Semantics-Preserving Affine Schedules PPoPP’20

Cost Functions

CSU 36

Scheduling for Performance: PPoPP’20

Objectives for Good Scheduling

Fine-grain parallelism is nice, but...
I It has little connection with modern SIMD parallelism
I No information about the quality of the generated code
I Ignores all the important performance objectives:

I Data locality / TLB / Cache consideration
I Multi-core parallelism (sync-free, with barrier)
I SIMD vectorization

Question: how to find a FAST schedule for a modern processor?

CSU 37

Scheduling for Performance: PPoPP’20

Performance Distribution for 1-D Schedules [1/2]

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

Transformation identifier

matmult

original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

Transformation identifier

locality

original

Figure: Performance distribution for matmult and locality

CSU 38

Scheduling for Performance: PPoPP’20

Performance Distribution for 1-D Schedules [2/2]

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

Transformation identifier

crout

original

(a) GCC -O3

 1.26e+09

 1.27e+09

 1.28e+09

 1.29e+09

 1.3e+09

 1.31e+09

 1.32e+09

 1.33e+09

 1.34e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

Transformation identifier

crout

original

original

(b) ICC -fast

Figure: The effect of the compiler

CSU 39

Scheduling for Performance: PPoPP’20

Quantitative Analysis: The Hypothesis

Extremely large generated spaces: > 1050 points

→ we must leverage static and dynamic characteristics to build traversal
mechanisms

Hypothesis:
I It is possible to statically order the impact on performance of

transformation coefficients, that is, decompose the search space in
subspaces where the performance variation is maximal or reduced

I First rows of Θ are more performance impacting than the last ones

CSU 40

Scheduling for Performance: PPoPP’20

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
tmp[i][j] = 0.0;
for (k = 0; k < M; k++)
tmp[i][j] += block[i][k] *

cos1[j][k];
}

for (i = 0; i < M; i++)
for (j = 0; j < M; j++) {
sum2 = 0.0;
for (k = 0; k < M; k++)
sum2 += cos1[i][k] * tmp[k][j];
block[i][j] = ROUND(sum2);

}

I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions

CSU 41

Scheduling for Performance: PPoPP’20

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst

Θ :




I Extensive study of 8x8 Discrete Cosine Transform (UTDSP)
I Search space analyzed: 66×19683 = 1.29×106 different legal

program versions

CSU 41

Scheduling for Performance: PPoPP’20

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst
I best
I average
I worst

I Take one specific value for the first row
I Try the 19863 possible values for the second row

I Very low proportion of best points: < 0.02%

CSU 41

Scheduling for Performance: PPoPP’20

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Point index of the second schedule dimension, first one fixed

Performance distribution (sorted) - 8x8 DCT

I Take one specific value for the first row
I Try the 19863 possible values for the second row
I Very low proportion of best points: < 0.02%

CSU 41

Scheduling for Performance: PPoPP’20

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Large performance variation

I Performance variation is large for good values of the first row

I It is usually reduced for bad values of the first row

CSU 41

Scheduling for Performance: PPoPP’20

Observations on the Performance Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Point index for the first schedule row

Performance distribution - 8x8 DCT

Best
Average

Worst Small performance variation

I Performance variation is large for good values of the first row
I It is usually reduced for bad values of the first row

CSU 41

Scheduling for Performance: PPoPP’20

Scanning The Space of Program Versions

The search space:
I Performance variation indicates to partition the space:~ı >~p > c

I Non-uniform distribution of performance

I No clear analytical property of the optimization function

→ Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics

CSU 42

Scheduling for Performance: PPoPP’20

The Quest for Good Objective Functions

I For data locality, loop tiling is key
I But what is the cost of tiling?
I Is tiling the only criterion?

I For coarse-grain parallelism, doall parallelization is key
I But what is the cost of parallelization?

CSU 43

Scheduling for Performance: PPoPP’20

Dependence Distance Minimization

I Idea: minimize the delay between instances accessing the same data
I Formulation in the polyhedral model:

I Expression of the delay through parametric form
I Use all dependences (including RAR)

Definition (Dependence distance minimization)

uk.~n+wk ≥Θ
S (~xS)−Θ

R (~xR) 〈~xR,~xS〉 ∈DR,S (1)

uk ∈ Np,wk ∈ N

CSU 44

Scheduling for Performance: PPoPP’20

Key Observations

I Minimizing d = uk.~n+wk minimize the dependence distance
I When d = 0 then ΘR

k (~xR) = ΘS
k(~xS)

I 0≥ΘR
k (~xR)−ΘS

k(~xS)≥ 0

I d gives an indication of the communication volume between hyperplanes

CSU 45

Scheduling for Performance: Tiling PPoPP’20

An Overview of Tiling

Tiling: partition the computation into atomic blocs

I Early work in the late 80’s
I Motivation: data locality improvement + parallelization

CSU 46

Scheduling for Performance: Tiling PPoPP’20

An Overview of Tiling

I Tiling the iteration space
I It must be valid (dependence analysis required)
I It may require pre-transformation
I Unimodular transformation framework limitations

I Supported in current compilers, but limited applicability

I Challenges: imperfectly nested loops, parametric loops,
pre-transformations, tile shape, ...

I Tile size selection
I Critical for locality concerns: determines the footprint
I Empirical search of the best size (problem + machine specific)
I Parametric tiling makes the generated code valid for any tile size

CSU 47

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Tiling in the Polyhedral Model

I Tiling partition the computation into blocks
I Note we consider only rectangular tiling here
I For tiling to be legal, such a partitioning must be legal

CSU 48

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Key Ideas of the Tiling Hyperplane Algorithm

Affine transformations for communication minimal parallelization and locality
optimization of arbitrarily nested loop sequences
[Bondhugula et al, CC’08 & PLDI’08]

I Compute a set of transformations to make loops tilable
I Try to minimize synchronizations
I Try to maximize locality (maximal fusion)

I Result is a set of permutable loops, if possible
I Strip-mining / tiling can be applied
I Tiles may be sync-free parallel or pipeline parallel

I Algorithm always terminates (possibly by splitting loops/statements)

CSU 49

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Legality of Tiling

Theorem (Legality of Tiling)

Given ΘR
k ,Θ

S
k two one-dimensional schedules. They are valid tiling

hyperplanes if

∀DR,S, ∀〈~xR,~xS〉 ∈DR,S, Θ
S
k(~xS)−Θ

R
k (~xR)≥ 0

I For a schedule to be a legal tiling hyperplane, all communications must
go forward: Forward Communication Only [Griebl]

I All dependences must be considered at each level, including the
previously strongly satisfied

I Equivalence between loop permutability and loop tilability

CSU 50

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Greedy Algorithm for Tiling Hyperplane
Computation

1 Start from the outer-most level, find the set of FCO schedules
2 Select one which minimize the distance between dependent iterations
3 Mark dependences strongly satisfied by this schedule, but do not

remove them
4 Formulate the problem for the next level (FCO), adding orthogonality

constraints (linear independence)
5 solve again, etc.

Special treatment when no permutable band can be found: splitting

A few properties:
I Result is a set of permutable/tilable outer loops, when possible
I It exhibits coarse-grain parallelism
I Maximal fusion achieved to improve locality

CSU 51

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 1

1-D Jacobi (imperfectly nested)
 for (t=1; t<M; t++) {
 for (i=2; i<N!1; i++) {

S: b[i] = 0.333*(a[i!1]+a[i]+a[i+1]); }
 for (j=2; j<N!1; j++) {

T: a[j] = b[j]; } }

CSU 52

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 2

1-D Jacobi (imperfectly nested)

•  The resulting transformation is equivalent to a constant
shift of one for T relative to S, fusion (j and i are named the
same as a result), and skewing the fused i loop with respect
to the t loop by a factor of two.
•  The (1,0) hyperplane has the least communication: no
dependence crosses more than one hyperplane instance
along it.

CSU 53

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 3

Transforming S

i

t! t

i!

CSU 54

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 4

Transforming T

j

t! t

j!

CSU 55

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 5

Interleaving S and T

t! t!

j! i!

CSU 56

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 6

Interleaving S and T

t

CSU 57

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 7

1-D Jacobi (imperfectly nested) – transformed code
 for (t0=0;t0<=M-1;t0++) {
S’: b[2]=0.333*(a[2-1]+a[2]+a[2+1]);
 for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
S: b[-2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
 +a[-2*t0+t1+1]);

T: a[-2*t0+t1-1]=b[-2*t0+t1-1]; }
T’: a[N-2]=b[N-2]; }

CSU 58

Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

The Ohio State University Louisiana State University 8

1-D Jacobi (imperfectly nested) – transformed code
 for (t0=0;t0<=M-1;t0++) {
S’: b[2]=0.333*(a[2-1]+a[2]+a[2+1]);
 for (t1=2*t0+3;t1<=2*t0+N-2;t1++) {
S: b[-2*t0+t1]=0.333*(a[-2*t0+t1-1]+a[-2*t0+t1]
 +a[-2*t0+t1+1]);

T: a[-2*t0+t1-1]=b[-2*t0+t1-1]; }
T’: a[N-2]=b[N-2]; }

!

!

! ! ! ! !

CSU 59

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Fusion-driven Optimization

CSU 60

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Overview

Problem: How to improve program execution time?

I Focus on shared-memory computation
I OpenMP parallelization
I SIMD Vectorization
I Efficient usage of the intra-node memory hierarchy

I Challenges to address:
I Different machines require different compilation strategies
I One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?

CSU 61

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Objectives for a Successful Optimization

During the program execution, interplay between the hardware ressources:
I Thread-centric parallelism
I SIMD-centric parallelism
I Memory layout, inc. caches, prefetch units, buses, interconnects...

→ Tuning the trade-off between these is required

A loop optimizer must be able to transform the program for:
I Thread-level parallelism extraction
I Loop tiling, for data locality
I Vectorization

Our approach: form a tractable search space of possible loop
transformations

CSU 62

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Running Example

Original code

Example (tmp = A.B, D = tmp.C)
for (i1 = 0; i1 < N; ++i1)
for (j1 = 0; j1 < N; ++j1) {

R: tmp[i1][j1] = 0;
for (k1 = 0; k1 < N; ++k1)

S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
} {R,S} fused, {T,U} fused

for (i2 = 0; i2 < N; ++i2)
for (j2 = 0; j2 < N; ++j2) {

T: D[i2][j2] = 0;
for (k2 = 0; k2 < N; ++k2)

U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];
}

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1×
4× Opteron 8380 / ICC 11 1×

CSU 63

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Running Example

Cost model: maximal fusion, minimal synchronization
[Bondhugula et al., PLDI’08]

Example (tmp = A.B, D = tmp.C)
parfor (c0 = 0; c0 < N; c0++) {

for (c1 = 0; c1 < N; c1++) {
R: tmp[c0][c1]=0;
T: D[c0][c1]=0;

for (c6 = 0; c6 < N; c6++)
S: tmp[c0][c1] += A[c0][c6] * B[c6][c1];

parfor (c6 = 0;c6 <= c1; c6++)
U: D[c0][c6] += tmp[c0][c1-c6] * C[c1-c6][c6];

} {R,S,T,U} fused
for (c1 = N; c1 < 2*N - 1; c1++)
parfor (c6 = c1-N+1; c6 < N; c6++)

U: D[c0][c6] += tmp[c0][1-c6] * C[c1-c6][c6];
}

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4×
4× Opteron 8380 / ICC 11 1× 2.2×

CSU 63

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Running Example

Maximal distribution: best for Intel Xeon 7450
Poor data reuse, best vectorization

Example (tmp = A.B, D = tmp.C)
parfor (i1 = 0; i1 < N; ++i1)
parfor (j1 = 0; j1 < N; ++j1)

R: tmp[i1][j1] = 0;
parfor (i1 = 0; i1 < N; ++i1)

for (k1 = 0; k1 < N; ++k1)
parfor (j1 = 0; j1 < N; ++j1)

S: tmp[i1][j1] += A[i1][k1] * B[k1][j1];
{R} and {S} and {T} and {U} distributed

parfor (i2 = 0; i2 < N; ++i2)
parfor (j2 = 0; j2 < N; ++j2)

T: D[i2][j2] = 0;
parfor (i2 = 0; i2 < N; ++i2)

for (k2 = 0; k2 < N; ++k2)
parfor (j2 = 0; j2 < N; ++j2)

U: D[i2][j2] += tmp[i2][k2] * C[k2][j2];

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4× 3.9×
4× Opteron 8380 / ICC 11 1× 2.2× 6.1×

CSU 63

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Running Example

Balanced distribution/fusion: best for AMD Opteron 8380
Poor data reuse, best vectorization

Example (tmp = A.B, D = tmp.C)
parfor (c1 = 0; c1 < N; c1++)
parfor (c2 = 0; c2 < N; c2++)

R: C[c1][c2] = 0;
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N;c3++) {
T: E[c1][c3] = 0;

parfor (c2 = 0; c2 < N;c2++)
S: C[c1][c2] += A[c1][c3] * B[c3][c2];

} {S,T} fused, {R} and {U} distributed
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)

U: E[c1][c2] += C[c1][c3] * D[c3][c2];

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4× 3.9× 3.1×
4× Opteron 8380 / ICC 11 1× 2.2× 6.1× 8.3×

CSU 63

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Running Example

Example (tmp = A.B, D = tmp.C)
parfor (c1 = 0; c1 < N; c1++)
parfor (c2 = 0; c2 < N; c2++)

R: C[c1][c2] = 0;
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N;c3++) {
T: E[c1][c3] = 0;

parfor (c2 = 0; c2 < N;c2++)
S: C[c1][c2] += A[c1][c3] * B[c3][c2];

} {S,T} fused, {R} and {U} distributed
parfor (c1 = 0; c1 < N; c1++)

for (c3 = 0; c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)

U: E[c1][c2] += C[c1][c3] * D[c3][c2];

Original Max. fusion Max. dist Balanced
4× Xeon 7450 / ICC 11 1× 2.4× 3.9× 3.1×
4× Opteron 8380 / ICC 11 1× 2.2× 6.1× 8.3×

The best fusion/distribution choice drives the quality of the optimization
CSU 63

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Loop Structures

Possible grouping + ordering of statements

I {{R}, {S}, {T}, {U}}; {{R}, {S}, {U}, {T}}; ...
I {{R,S}, {T}, {U}}; {{R}, {S}, {T,U}}; {{R}, {T,U}, {S}}; {{T,U}, {R}, {S}};...
I {{R,S,T}, {U}}; {{R}, {S,T,U}}; {{S}, {R,T,U}};...
I {{R,S,T,U}};

Number of possibilities: >> n! (number of total preorders)

CSU 64

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Loop Structures

Removing non-semantics preserving ones

I {{R}, {S}, {T}, {U}}; {{R}, {S}, {U}, {T}}; ...
I {{R,S}, {T}, {U}}; {{R}, {S}, {T,U}}; {{R}, {T,U}, {S}}; {{T,U}, {R}, {S}};...
I {{R,S,T}, {U}}; {{R}, {S,T,U}}; {{S}, {R,T,U}};...
I {{R,S,T,U}}

Number of possibilities: 1 to 200 for our test suite

CSU 64

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Loop Structures

For each partitioning, many possible loop structures

I {{R}, {S}, {T}, {U}}
I For S: {i, j,k}; {i,k, j}; {k, i, j}; {k, j, i}; ...
I However, only {i,k, j} has:

I outer-parallel loop
I inner-parallel loop
I lowest striding access (efficient vectorization)

CSU 64

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Possible Loop Structures for 2mm

I 4 statements, 75 possible partitionings
I 10 loops, up to 10! possible loop structures for a given partitioning

I Two steps:
I Remove all partitionings which breaks the semantics: from 75 to 12
I Use static cost models to select the loop structure for a partitioning: from

d! to 1

I Final search space: 12 possibilites

CSU 65

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Contributions and Overview of the Approach

I Empirical search on possible fusion/distribution schemes
I Each structure drives the success of other optimizations

I Parallelization
I Tiling
I Vectorization

I Use static cost models to compute a complex loop transformation for a
specific fusion/distribution scheme

I Iteratively test the different versions, retain the best
I Best performing loop structure is found

CSU 66

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Search Space of Loop Structures

I Partition the set of statements into classes:
I This is deciding loop fusion / distribution
I Statements in the same class will share at least one common loop in the

target code
I Classes are ordered, to reflect code motion

I Locally on each partition, apply model-driven optimizations

I Leverage the polyhedral framework:
I Build the smallest yet most expressive space of possible partitionings

[Pouchet et al., POPL’11]
I Consider semantics-preserving partitionings only: orders of magnitude

smaller space

CSU 67

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Summary of the Optimization Process

description #loops #stmts #refs #deps #part. #valid Variability Pb. Size
2mm Linear algebra (BLAS3) 6 4 8 12 75 12 X 1024x1024
3mm Linear algebra (BLAS3) 9 6 12 19 4683 128 X 1024x1024
adi Stencil (2D) 11 8 36 188 545835 1 1024x1024
atax Linear algebra (BLAS2) 4 4 10 12 75 16 X 8000x8000
bicg Linear algebra (BLAS2) 3 4 10 10 75 26 X 8000x8000
correl Correlation (PCA: StatLib) 5 6 12 14 4683 176 X 500x500
covar Covariance (PCA: StatLib) 7 7 13 26 47293 96 X 500x500
doitgen Linear algebra 5 3 7 8 13 4 128x128x128
gemm Linear algebra (BLAS3) 3 2 6 6 3 2 1024x1024
gemver Linear algebra (BLAS2) 7 4 19 13 75 8 X 8000x8000
gesummv Linear algebra (BLAS2) 2 5 15 17 541 44 X 8000x8000
gramschmidt Matrix normalization 6 7 17 34 47293 1 512x512
jacobi-2d Stencil (2D) 5 2 8 14 3 1 20x1024x1024
lu Matrix decomposition 4 2 7 10 3 1 1024x1024

ludcmp Solver 9 15 40 188 1012 20 X 1024x1024
seidel Stencil (2D) 3 1 10 27 1 1 20x1024x1024

Table: Summary of the optimization process

CSU 68

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Experimental Setup

We compare three schemes:
I maxfuse: static cost model for fusion (maximal fusion)

I smartfuse: static cost model for fusion (fuse only if data reuse)

I Iterative: iterative compilation, output the best result

CSU 69

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Performance Results - Intel Xeon 7450 - ICC 11

 0

 1

 2

 3

 4

 5

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ I

C
C

 -
fa

st
 -

pa
ra

lle
l

Performance Improvement - Intel Xeon 7450 (24 threads)

pocc-maxfuse
pocc-smartfuse

iterative

CSU 70

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Performance Results - AMD Opteron 8380 - ICC 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ I

C
C

 -
fa

st
 -

pa
ra

lle
l

Performance Improvement - AMD Opteron 8380 (16 threads)

pocc-maxfuse
pocc-smartfuse

iterative

CSU 71

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Performance Results - Intel Atom 330 - GCC 4.3

 0

 5

 10

 15

 20

 25

 30

2m
m

3m
m

adi
atax

bicg
correl

covar

doitgen

gem
m
gem

ver

gesum
m

v

gram
schm

idt

jacobi-2d

lu ludcm
p

seidel

P
er

f.
Im

p
/ G

C
C

 4
.3

 -
O

3
-f

op
en

m
p

Performance Improvement - Intel Atom 230 (2 threads)

pocc-maxfuse
pocc-smartfuse

iterative

CSU 72

Scheduling for Performance: Fusion-driven Optimization PPoPP’20

Assessment from Experimental Results

1 Empirical tuning required for 9 out of 16 benchmarks

2 Strong performance improvements: 2.5× - 3× on average

3 Portability achieved:
I Automatically adapt to the program and target architecture
I No assumption made about the target
I Exhaustive search finds the optimal structure (1-176 variants)

4 Substantial improvements over state-of-the-art (up to 2×)

CSU 73

	Affine Scheduling
	One-dimensional Schedules
	Multidimensional Scheduling
	Space of Semantics-Preserving Affine Schedules

	Scheduling for Performance
	Tiling
	The Tiling Hyperplane Method
	Fusion-driven Optimization

