Polyhedral Scheduling and Transformations

Louis-Noél Pouchet

CS & ECE
Colorado State University

February 23, 2020

PPoPP’20 Tutorial



PPOPP’20

csu

Scheduling



Affine Scheduling: PPoPP’20

Affine Scheduling

Definition (Affine schedule)

Given a statement S, a p-dimensional affine schedule OF is an affine form on
the outer loop iterators X5 and the global parameters 7. It is written:

Xs
®S(}S) =T | 7 , Tse prdim(?cg)—}—dim(h‘)—t—l
1

> A schedule assigns a timestamp to each executed instance of a
statement

» If T is a vector, then ® is a one-dimensional schedule
» If T is a matrix, then ® is a multidimensional schedule
> Question: does it translate to sequential loops?
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Legal Program Transformation

Definition (Precedence condition)

Given OF a schedule for the instances of R, ®° a schedule for the instances
of S. ® and @ are legal schedules if ¥ (¥, ¥s) € Dr.s:

Or(¥r) < Os(Xs)

< denotes the lexicographic ordering.

(ary...,an) < (b1,...,by) iff Ji, 1 <i<min(n,m) s.t. (ay,...,ai—1) = (b1,...,bi—1)
and a; < b;



Affine Scheduling: PPoPP’20

Scheduling in the Polyhedral Model

Constraints:

» The schedule must respect the precedence condition, for all dependent
instances

» Dependence constraints can be turned into constraints on the solution
set

Scheduling:
» Among all possibilities, one has to be picked
» Optimal solution requires to consider all legal possible schedules
» Question: is this always true?

csu 5
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One-Dimensional Affine Schedules

For now, we focus on 1-d schedules

» Simple program: 1 loop, 1 polyhedral statement
» 2 dependences:

> RAW: Afi] — Ali - 1]

> WAR: Ai + 1] — A[i]

csu 6
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Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal
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Checking the Legality of a Schedule

Exercise: given the dependence polyhedra, check if a schedule is legal

1 1 0 0 -1 1 10 0 -1

1 -1 0 1 -l o 1 -1 0 1 -l o
. 1 0 1 0 1 s . 1 0 1 0 1 s
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Solution: check for the emptiness of the polyhedron

where:
> ig > i gets the consumer instances scheduled after the producer ones
» For ® = —i, itis —ig > —ig, which is non-empty



Affine Scheduling:

A (Naive) Scheduling Approach

» Pick a schedule for the program statements

» Check if it respects all dependences

This is called filtering

Limitations:

» How to use this in combination of an objective function?
» The density of legal 1-d affine schedules is low:

[ [ matmult | locality | fir [ h264 crout
i-Bounds -1,1 —1,1 0,1 —1,1 3,3
c-Bounds —1,1 —1,1 0,3 0,4 -3,3
#Sched. | 1.9x107 | 59x10" | 1.2x107 [ 1.8x10° | 2.6x 10"

[ #Legal [ 6561 912 792 360 798
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Objectives for a Good Scheduling Algorithm

» Build a legal schedule!
» Embed some properties in this legal schedule
> latency: minimize the time of the last iteration
delay: minimize the time between the first and last iteration
parallelism / placement
permutability (for tiling)

vvyy

A possible "simple" two-step approach:
» Find the solution set of all legal affine schedules
» Find an ILP/PIP formulation for the objective function(s)

csu 9
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The Precedence Constraint (Again!)

Precedence constraint adapted to 1-d schedules:

Definition (Causality condition for schedules)

Given Dg 5, OF and " are legal iff for each pair of instances in dependence:
0F (xr) < (%)

Equivalently: Ag s = ©%(x5) — % (k) — 1 >0

> All functions Ag s which are non-negative over the dependence
polyhedron represent legal schedules

» For the instances which are not in dependence, we don’t care
» First step: how to get all non-negative functions over a polyhedron?

csu
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Affine Form of the Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by AX + b>0. Then any affine
function f (X) is non-negative everywhere in D iff it is a positive affine
combination:

fQR)= 7\0+_7LT(A3'C—|—B), with Ay > 0and &> 0

Ao and AT are called the Farkas multipliers.

csu 1
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The Farkas Lemma: Example

» Function: f(x) = ax+b
» Domainofx: {1 <x<3}—>5x—-1>0, —x+3>0
» Farkas lemma: f(x) > 0 < f(x) =Xo+ A (x— 1)+ A2 (—x+3)

The system to solve:

7\1 — 7\,2 = da

Mo — A+ 3k = b
Ao > 0
M > 0

Mmoo >0

csu 12
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Example: Semantics Preservation (1-D)

Affine
Schedules

Legal
Distinct
Schedules
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Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition

Property (Causality condition for schedules)

Given R3S, O and @ are legal iff for each pair of instances in dependence:

O (k) < ©°(%)

Equivalently: Ag s = ©°%(i%5) — @R () — 1> 0
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Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine
Schedules

- Causality condition
- Farkas Lemma

Lemma (Affine form of Farkas lemma)

Let D be a nonempty polyhedron defined by A% +5>0. Then any affine function f (%)
is non-negative everywhere in D iff it is a positive affine combination:

F(®) = Ao+ AT (A% +B), with Ay > 0 and & > 0.

Ao and AT are called the Farkas multipliers.
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Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Affine Valid

Farkas
Schedules Multipliers

- Causality condition
- Farkas Lemma
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Example: Semantics Preservation (1-D)

Affine

Schedules ——" Farkas

Itiplie

- Causality condition
- Farkas Lemma
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Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Valid
Farkas
Multipliers

Affine
Schedules

- Causality condition - Identification
- Farkas Lemma

@5 (5) — O (k) — 1 = Ao+ A7 (DR,S (J;_{e) +;1R,s) >0
S

Dpss iR : 7\'01.1 _7‘D1.2 +7‘D1.3 _7\’Dl.4
ig _>“D1.1 + 7"D1.2 + 7"D1.5 - }\’Dl.6
s AD,; —AD, g
n >"D1.4 + 7"D1,6 + 7"D1.s
1 : >“D1.0
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Example: Semantics Preservation (1-D)

Legal
Distinct
Schedules

Valid
Farkas
Multipliers

Affine
Schedules

- Causality condition - Identification
- Farkas Lemma

0%(xs) — OF (i) — 1 =g+ AT (DR,S (};R) +3R,s) >0
5

Dpss iR : —h, = 7‘D1.1 _}\’DI.Z +7"D1,3 _}"Dm
ig hy = _7\‘Dl.l + }"Dl.z + 7“D1,5 - 7"D1A6
s ty = Ap;;—Apg
n I3, —ly = 7“D1.4 +}\’Dl.6 + 7\‘D1,8
1 : fgg — 13 — 1 = 7\.qu0
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Example: Semantics Preservation (1-D)

Legal

; Valid
Affine S Distinct
Schedules Multipliers Schedules

- Causality condition - Identification
- Farkas Lemma - Projection

» Solve the constraint system

» Use (purpose-optimized) Fourier-Motzkin projection algorithm
» Reduce redundancy
> Detect implicit equalities
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Example: Semantics Preservation (1-D)

) Valid
E ﬁﬁ:?el [ | Transformation
chedules Coefficients

- Causality condition - Identification
- Farkas Lemma - Projection
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Example: Semantics Preservation (1-D)

Bijection Legal

i Valid Valid -€g
S /r\lﬁ::? el Farkas [ | Transformation Distinct
g oS Multipliers Coefficients Schedules

- Causality condition - Identification
- Farkas Lemma - Projection

» One point in the space <> one set of legal schedules
w.r.t. the dependences

csu 13
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Scheduling Algorithm for Multiple Dependences

Algorithm
» Compute the schedule constraints for each dependence
> Intersect all sets of constraints
» Output is a convex solution set of all legal one-dimensional schedules

» Computation is fast, but requires eliminating variables in a system of
inequalities: projection
» Can be computed as soon as the dependence polyhedra are known

csu 14
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Objective Function

Idea: bound the latency of the schedule and minimize this bound

Theorem (Schedule latency bound)

If all domains are bounded, and if there exists at least one 1-d schedule ®,
then there exists at least one affine form in the structure parameters:

L=un+w

such that:

VXg, L > Og(Xr)

» Objective function: min{a,w | #.7i+w—0 > 0}
» Subject to ® is a legal schedule, and 6; > 0

> In many cases, it is equivalent to take the lexicosmallest point in the
polytope of non-negative legal schedules

csu 15
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Affine ing: O

Example

min{i,w |i.i+w—02>0}:0r=0, Og=k+1

parfor (1 = 0; 1 < N; ++1)
parfor (j = 0; j < N; ++7)
Clil[3] = 0;
for (k = 1; k < N + 1; ++k)
parfor (i = 0; 1 < N; ++1)
parfor (j = 0; j < N; ++7)
Cli1[3] += A[i][k-1] + B[k-11[3]; )

csu
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Limitations of One-dimensional Schedules

» Not all programs have a legal one-dimensional schedule

» Question: does this program have a 1-d schedule?

» Not all compositions of transformation are possible

» Interchange in inner-loops
» Fusion / distribution of inner-loops

csu 17
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Multidimensional Scheduling

csu 18
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Multidimensional Scheduling

» Some program does not have a legal 1-d schedule

» It means, it's not possible to enforce the precedence condition for all
dependences

for (i = 0; 1 < N; ++1)

for (j
s += s;

0; j < N; ++3)

» Intuition: multidimensional time means nested time loops

» The precedence constraint needs to be adapted to multidimensional
time

csu 19
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Dependence Satisfaction

Definition (Strong dependence satisfaction)

Given Dk s, the dependence is strongly satisfied at schedule level « if

V (%g,Xs) € Drs, OF(%s) —OR(Fg) > 1

Definition (Weak dependence satisfaction)

Given Dk s, the dependence is weakly satisfied at dimension & if

Y (Xr,Xs) € Dr.s, O3 (¥s) — OF (¥g) > 0
3 (Xr,Xs) € Drs, O} (¥s) = OF (¥g)

csu 20
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Program Legality and Existence Results

» All dependence must be strongly satisfied for the program to be correct

» Once a dependence is strongly satisfied at level %, it does not
contribute to the constraints of level k+i

» Unlike with 1-d schedules, it is always possible to build a legal
multidimensional schedule for a SCoP [Feautrier]

Theorem (Existence of an affine schedule)
Every static control program has a multdidimensional affine schedule

csu 21
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Reformulation of the Precedence Condition

. . D, . .
» We introduce variable 3, *$ to model the dependence satisfaction

» Considering the first row of the scheduling matrices, to preserve the
precedence relation we have:

Lo . . D
VDgs, V (g, Xs) € Drs, OF(xs) —OF (xg) > 8
8,5 € {0,1}

Lemma (Semantics-preserving affine schedules)

Given a set of affine schedules ®F @S . .. of dimension m, the program
semantics is preserved if:

VQ)R75, E|p € {1,...,1"’1}7 Slf;DRS =
AN Vji<p, SjDR‘S:

. o . D
A V) <p,V(ir,Ts) € Drs, ©,(Fs) — O (3r) > §;

csu 22
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Space of All Affine Schedules

Objective:
» Design an ILP which operates on all scheduling coefficients
» Easier optimality reasoning: the space contains all schedules (hence
necesarily the optimal one)

» Examples: maximal fusion, maximal coarse-grain parallelism, best
locality, etc.

idea:
» Combine all coefficients of all rows of the scheduling function into a
single solution set

» Find a convex encoding for the lexicopositivity of dependence
satisfaction

> A dependence must be weakly satisfied until it is strongly satisfied
» Once it is strongly satisfied, it must not constrain subsequent levels

csu 23
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Schedule Lower Bound

Idea:
» Bound the schedule latency with a lower bound which does not prevent
to find all solutions
» Intuitively:

> @5(%s) — OF (Xg) > § if the dependence has not been strongly satisfied
> @5(%s) — OF (Fg) > —ooif it has

Lemma (Schedule lower bound)

Given ©F, @f such that each coefficient value is bounded in [x,y]. Then
there exists K € 7 such that:

max (@i(fs) = @f(i}e)) >—Knin—K

csu 24
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Space of Semantics-Preserving Affine Schedules

All unique bounded All unique semantics-preserving
affine multidimensional schedules affine multidimensional schedules

1 point <> 1 unique semantically equivalent program
(up to affine iteration reordering)

csu 25
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Semantics Preservation

Definition (Causality condition)

Given @F a schedule for the instances of R, ®° a schedule for the instances
of S. ®F and @ preserve the dependence Di s if V (¥, Xs) € Dg.s:

@R (yCR) < @S (36'5)

=< denotes the lexicographic ordering.

(ary...,an) < (b1,...,by) iff 3i, 1 <i<min(n,m) s.t. (ay,...,ai—1) = (b1,...,bi_1)
and a; <b,’

csu 26
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Lexico-positivity of Dependence Satisfaction

> OF(%) < O (s) is equivalently written @5 (%g) — O (Zg) > 0

csu 27
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Lexico-positivity of Dependence Satisfaction

> OR(Zg) < @ (xs) is equivalently written @S (¥g) — O (Zg) > 0
» Considering the row p of the scheduling matrices:

©) (¥s) — O} (¥r) > 8

csu 27
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Lexico-positivity of Dependence Satisfaction
> OR(Zg) < @ (xs) is equivalently written @S (¥g) — O (Zg) > 0
» Considering the row p of the scheduling matrices:

©) (¥s) — O} (¥r) > 8

1 implies no constraints on &, k > p

> 5, >
» &, > 0isrequiredif Ak <p, & >1

csu 27
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Lexico-positivity of Dependence Satisfaction
> OR(Zg) < @ (xs) is equivalently written @S (¥g) — O (Zg) > 0
» Considering the row p of the scheduling matrices:

), (¥s) — O (%r) > 5,

1 implies no constraints on &, k > p

> 5, >
» &, > 0isrequiredif Ak <p, & >1

» Schedule lower bound:

Lemma (Schedule lower bound)

Given ®R, ®} such that each coefficient value is bounded in [x,y]. Then
there exists K € Z such that:

VxR, Xs, @f(}S) —@f(}]g) >—Kn—K

csu 27
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Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®%,®° . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() VDrs, 8 €{0,1}

csu 28
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Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®%,®° . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() VDrs, 8 €{0,1}

L))
(i) VDrs, ¥, 8" =1
p=1

csu 28
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Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®F @5 . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() VDrs, 8 €{0,1}

L))
(i) VDrs, ¥, 8" =1
p=1

(iif) V@R,S, Vp € {L"'am}v v<5C’Ra555> € @R,S7

- . D
G)Isj(xg) — ®§ (*r) > 6, i

csu 28
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Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®F @5 . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() VDrs, 8 €{0,1}

L))
(i) VDrs, ¥, 8" =1
p=1

(iif) V@R,S, Vp € {L"'am}v v<5C’Ra555> € @R,S7

p—1
O3 (¥s) — OF (1) > 8, — ¥ 8, " (K.t +K)
k=1

csu 28
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Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®F @5 . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() YDrs, 8" €{0,1}

X D)
(i) VDrs, Y, 8" =1
p=1

(iii) v@R,Sa Vp € {la"',m}7 v<3€R755.5'> € Q)R,Sv

p—1 )
@3 (s) — OF (¥r) — 8, + kzl 5% (K7i+K) >0

— Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]
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Convex Form of All Bounded Affine Schedules

Lemma (Convex form of semantics-preserving affine schedules)

Given a set of affine schedules ®F @5 . .. of dimension m, the program
semantics is preserved if the three following conditions hold:

() YDrs, 8" €{0,1}

X D)
(i) VDrs, Y, 8" =1
p=1

(iii) v@R,Sa Vp € {la"',m}7 v<3€R755.5'> € Q)R,Sv

p—1 )
@3 (s) — OF (¥r) — 8, + kzl 5% (K7i+K) >0

— Use Farkas lemma to build all non-negative functions over a
polyhedron (here, the dependence polyhedra) [Feautrier,92]
— Bounded coefficients required [Vasilache,07]

csu 28
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Maximal Fine-Grain Parallelism

Objectives:
» Have as few dimensions as possible carrying a dependence

» For dimension k € p..1:
. )
min Z S, kS
DR.s
» We use lexicographic optimization

csu 29
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Key Observations

Is all of this really necessary?

» We have encoded one objective per row of ®
» Question: do we need to solve this large ILP/LP?

csu

30
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Feautrier’s Greedy Algorithm

Main idea:
© Startatrow 1 of ©
@ Build the set of legal one-dimensional schedules
© Maximize the number of dependences strongly solved (max d;)
© Remove strongly solved dependences from P
@ Goto 1

This is a row-by-row decomposition of the scheduling problem

csu 31
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Key Properties of Feautrier’s Algorithm

> It terminates
> It finds "optimal” fine-grain parallelism

» Granularity of dependence satisfaction: all-or-nothing

csu 32
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Key Observations

Is all of this really necessary?

» Question: do we need to consider all statements at once?

» Insight: the PDG gives structural information about dependences

» Decomposition of the PDG into strongly-connected components

csu 33



Affine Space of i ving Affine PPoPP’20
P
Feautrier’s Scheduler
e Schedule(U, p):
o [/ is a set of edges in the GDG and p is an integer. Initially, p = 1 and
U is the set of all edges in the GDG.
1. Compute the strongly connected components of U/, {Hy,..., H,},
ranking them according to the reduced graph of U.
2. For each i = 1,...,n, solve linear program (29).
(a) If the solution is such that ¢ = 0, the algorithm fails. This
never happens if the GDG comes from a sequential program.
(b) If not, the schedules obtained at step 2 are the components
of index p of the multidimensional schedule.
(c) Build the set U’ of unsatisfied edges, and, if U’ # 0, call
recursively Schedule(U’,p +1).
csu 3
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More Observations

» Some problems may be decomposed without loss of optimality
» The PDG gives extra information about further problem decomposition

Still, is all of this really necessary?

» Question: can we use additional knowledge about dependences?

» Uniform, non-uniform and parametric dependences

csu 35
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Cost Functions

csu 36
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Objectives for Good Scheduling

Fine-grain parallelism is nice, but...
» It has little connection with modern SIMD parallelism
» No information about the quality of the generated code

» Ignores all the important performance objectives:

> Data locality / TLB / Cache consideration
> Multi-core parallelism (sync-free, with barrier)
> SIMD vectorization

Question: how to find a FAST schedule for a modern processor?

csu 37
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Performance Distribution for 1-D Schedules [1/2]

matmult locality
2e+09 ' ' ' ' ' ' ' ' ' Bl 4e+09 ' B
L gt st gt e b e piidh
1.8e+09  fae #67] €adbiyliy 4% o ol i, el - 3.5e+09 -
gkt oa rt Fe )
16400 } TEE L1 e, 1t 3e+09
8 1.4e+09 - ot . - 8 2.5e+09 -
3 o hptop FRe b TET E okt e pep e b e s iR I3
@) 1.2e+09 P - [€) 2e+09 -
I Lt L
16409 [* srrtd ate ++ R ard e ie 640 54 original 1.56+09 7
ses08 | GFoid Ghepd et BE et S o At 16409 L
+ original
F O R TR R Tar B oSy ‘ ey *
6e+08 L MR P . 5e+08 . . ! . . . .
0 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 5000 6000 7000
Transformation identifier Transformation identifier

Figure: Performance distribution for matmult and locality
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Performance Distribution for 1-D Schedules [2/2]

1.42e+09

1.4e+09
1.38e+09
1.36e+09

1.34e+09

Cycles

1.32e+09
1.3e+09

1.28e+09

gy W W )

N
et

R,
+4 SE¥original

1.26e+09

csu

100 200 300 400 500 600 700 800
Transformation identifier

(a) acc-o03

Cycles

crout
1.346+09 C e
. A N
1.336+09 i o
1.32e+09 %3& s -
e g +
1.31e+09 ey o {f R tu PRt
e e gt S L
1.3e+09 R Rl *‘*%3 LT
b {‘%&a ppied 3
PR A w -

e
e
+%
BLiats
W

1.29e+09

T
&
L
.
o
4,
A
I
¥
py
N
‘o
T
”
kS
e

I
s, original

L ‘*a‘ L Il

1.28e+09

o
4
Eat

fad

+

1.27e+09
0 100 200 300 400 500 600 700 800
Transformation identifier

1.26e+09

(b) ICC -fast

Figure: The effect of the compiler

39



Scheduling for Performance: PPoPP’20

Quantitative Analysis: The Hypothesis

Extremely large generated spaces: > 10°° points

— we must leverage static and dynamic characteristics to build traversal
mechanisms

Hypothesis:

> It is possible to statically order the impact on performance of
transformation coefficients, that is, decompose the search space in
subspaces where the performance variation is maximal or reduced

> First rows of ® are more performance impacting than the last ones

csu 40
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Observations on the Performance Distribution

Performance distribution - 8x8 DCT

16 - Average -
orst for (i = 0; i < M; i++)

14 - for (j = 0; 3 <M; j++) {
_ tmp[i][j] = 0.0;
T 12t - for (k = 0; k < M; kt+)
g tmp[i] [j] += block[i] [k] =
2 cos1[j][k];
£ }
g for (i = 0; i < M; i++)
g for (j = 0; j <M; j++) {
s sum2 = 0.0;
& for (k = 0; k < M; kt+)

sum2 += cosl[i][k] * tmp[k][j];
block[i] [j] = ROUND (sum2);

L L L
10 20 30 40 50 60
Point index for the first schedule row

» Extensive study of 8x8 Discrete Cosine Transform (UTDSP)

» Search space analyzed: 66 x 19683 = 1.29 x 10° different legal
program versions
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Performance improvement

csu

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

L L L L
20 30 40 50
Point index for the first schedule row

» Extensive study of 8x8 Discrete Cosine Transform (UTDSP)

» Search space analyzed: 66 x 19683 = 1.29 x 10° different legal
program versions
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Performance improvement

csu

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

- » average
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10 20 30 40 50 60
Point index for the first schedule row

» Take one specific value for the first row
» Try the 19863 possible values for the second row
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Observations on the Performance Distribution

Performance distribution - 8x8 DCT Performance distribution (sorted) - 8x8 DCT
Ll \ ‘ \ ol o )
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Point index for the first schedule row Point index of the second schedule dimension, first one fixed
» Take one specific value for the first row
» Try the 19863 possible values for the second row
» Very low proportion of best points: < 0.02%
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Observations on the Performance Distribution

Large performance variation

Performance improvement

10 20 30 40 50 60
Point index for the first schedule row

» Performance variation is large for good values of the first row
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Performance improvement

csu

Observations on the Performance Distribution

Performance distribution - 8x8 DCT

Average

B - =
| MSmall performance variation

'
est ———
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10 20 30 40 50 60
Point index for the first schedule row

» Performance variation is large for good values of the first row
» |t is usually reduced for bad values of the first row
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Scanning The Space of Program Versions

The search space:
> Performance variation indicates to partition the space: 7>p > ¢

» Non-uniform distribution of performance

» No clear analytical property of the optimization function

— Build dedicated heuristic and genetic operators aware of these static
and dynamic characteristics
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The Quest for Good Objective Functions

» For data locality, loop tiling is key

> But what is the cost of tiling?
> s tiling the only criterion?

» For coarse-grain parallelism, doall parallelization is key
> But what is the cost of parallelization?

csu 43



Scheduling for Performance: PPoPP’20

Dependence Distance Minimization

» Idea: minimize the delay between instances accessing the same data
» Formulation in the polyhedral model:

> Expression of the delay through parametric form
> Use all dependences (including RAR)

Definition (Dependence distance minimization)

we st +wg > 08 () —OF (g)  (¥r,¥s) € Drs (1)
u; € Np,wk eN
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Key Observations

» Minimizing d = u.7i + wy minimize the dependence distance
> When d = 0 then OF (g) = O (%s)
> 0> 0 (k) — ©(¥s5) = 0

» d gives an indication of the communication volume between hyperplanes
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An Overview of Tiling

Tiling: partition the computation into atomic blocs

» Early work in the late 80’s
» Motivation: data locality improvement + parallelization

1
¢ Olnstances of S1
@ Instances of S2
OA tile

o
w4
w
IS
o
Z
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An Overview of Tiling

» Tiling the iteration space

> It must be valid (dependence analysis required)
> It may require pre-transformation
> Unimodular transformation framework limitations

» Supported in current compilers, but limited applicability

» Challenges: imperfectly nested loops, parametric loops,
pre-transformations, tile shape, ...

» Tile size selection

» Critical for locality concerns: determines the footprint
» Empirical search of the best size (problem + machine specific)
> Parametric tiling makes the generated code valid for any tile size
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Tiling in the Polyhedral Model

» Tiling partition the computation into blocks
» Note we consider only rectangular tiling here
» For tiling to be legal, such a partitioning must be legal

1
" g ors: el i
OA tile IIllegal tile
N[O (09— ¢
AW Zeca
e
Rz %
24 [O—=>@1>f
| 12712
O J
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Key Ideas of the Tiling Hyperplane Algorithm

Affine transformations for communication minimal parallelization and locality
optimization of arbitrarily nested loop sequences
[Bondhugula et al, CC’08 & PLDI'08]

» Compute a set of transformations to make loops tilable

> Try to minimize synchronizations
> Try to maximize locality (maximal fusion)

» Result is a set of permutable loops, if possible
> Strip-mining / tiling can be applied
> Tiles may be sync-free parallel or pipeline parallel

» Algorithm always terminates (possibly by splitting loops/statements)
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Legality of Tiling

Theorem (Legality of Tiling)

Given ®@F @} two one-dimensional schedules. They are valid tiling
hyperplanes if

VDgs, ¥ (¥r,Xs) € Drs, OF (¥s) — OF (Fg) > 0

» For a schedule to be a legal tiling hyperplane, all communications must
go forward: Forward Communication Only [Griebl]

» All dependences must be considered at each level, including the
previously strongly satisfied

» Equivalence between loop permutability and loop tilability
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Greedy Algorithm for Tiling Hyperplane
Computation

@ Start from the outer-most level, find the set of FCO schedules
@ Select one which minimize the distance between dependent iterations

@ Mark dependences strongly satisfied by this schedule, but do not
remove them

@ Formulate the problem for the next level (FCO), adding orthogonality
constraints (linear independence)

@ solve again, etc.

Special treatment when no permutable band can be found: splitting

A few properties:
» Result is a set of permutable/tilable outer loops, when possible
» |t exhibits coarse-grain parallelism
» Maximal fusion achieved to improve locality
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Example: 1D-Jacobi

1-D Jacobi (imperfectly nested)

for (t=1; t<M; t++) {

for (i=2; i<N-1; i++) {

S: b[i] = 0.333*(a[i-1]+a[i]+a[i+1]); }
for (j=2; j<N-1; j++) {
T: af[jl = b[jl; } }
t
1
o2 . 2 1 0
t
oL, ) [1 00
2. { 211
Louisiana State University 1 The Ohio State University
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csu

Example: 1D-Jacobi

1-D Jacobi (imperfectly nested)

[4(1)=[ 03]
ot |\ | 2 1 0
. t
EAICIEERRY
T1\1

* The resulting transformation is equivalent to a constant
shift of one for T relative to S, fusion (j and i are named the
same as a result), and skewing the fused i loop with respect
to the t loop by a factor of two.

* The (1,0) hyperplane has the least communication: no
dependence crosses more than one hyperplane instance
along it.

Louisiana State University 2 The Ohio State University
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Example: 1D-Jacobi

Transforming S

[aﬁﬂ j :[

DN =

)

o O

—_
o O O O

o O O O
o O O O
o O O O

o O O O

o O O O

y

t

Louisiana State University 3

csu
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Example: 1D-Jacobi

Transforming T

[}
[}
1
T 1 2 11 e o
e O
j iy @ @
[}
e & o [}
e o o [ 2
e & o
e & o
t t
Louisiana State University 4 The Ohio State University

csu 55



Scheduling for Performance: The Tiling Hyperplane Method PPoPP’20

Example: 1D-Jacobi

Interleaving Sand T

(]
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(@] e o
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o O (]
(@] (]
(@]
t t
Louisiana State University 5 The Ohio State University
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Example: 1D-Jacobi

Interleaving Sand T

O CeCeCe @

[}
; g
ally)-lre]
5 =
9 1\ 1 2 10 s
ok Y 1100 8o
b2, { 12 11 g
O
t
Louisiana State University 6 The Ohio State University
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Example: 1D-Jacobi

1-D Jacobi (imperfectly nested) — transformed code

for (t0=0;t0<=M-1;t0++) {
s’: Db[2]=0.333*(a[2-1]+a[2]+a[2+1]);
for (tl=2*t0+3;tl<=2*t0+N-2;tl++) {

s: b[-2*t0+t1]=0.333* (a[-2*t0+t1-1]+a[-2*t0+t1]
+a[-2%t0+t1+1]) ;
T a[-2*%t0+t1-1]=b[-2*t0+t1-1]; }

T: a[N-2]=b[N-2]; }

O CeCe Co @
O CeCe Co @
O CeCe Co @

Louisiana State University 7 The Ohio State University
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Example: 1D-Jacobi

1-D Jacobi (imperfectly nested) — transformed code

for (t0=0;t0<=M-1;t0++) {
s’: Db[2]=0.333*(a[2-1]+a[2]+a[2+1]);
for (tl=2*t0+3;tl<=2*t0+N-2;tl++) {

s: b[-2*t0+t1]=0.333* (a[-2*t0+t1-1]+a[-2*t0+t1]
+a[-2%t0+t1+1]) ;
T: a[-2*%t0+t1-1]=b[-2*t0+t1-1]; }

T: a[N-2]=b[N-2]; }

O OCejce Ce| @
O OCejce Ce| @
O OCejce Ce| @

Louisiana State University 8 The Ohio State University
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Fusion-driven Optimization
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Overview

Problem: How to improve program execution time?

» Focus on shared-memory computation

» OpenMP parallelization
> SIMD Vectorization
> Efficient usage of the intra-node memory hierarchy

» Challenges to address:

> Different machines require different compilation strategies
» One-size-fits-all scheme hinders optimization opportunities

Question: how to restructure the code for performance?
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Objectives for a Successful Optimization

During the program execution, interplay between the hardware ressources:
» Thread-centric parallelism
» SIMD-centric parallelism
» Memory layout, inc. caches, prefetch units, buses, interconnects...

— Tuning the trade-off between these is required

A loop optimizer must be able to transform the program for:
» Thread-level parallelism extraction
» Loop tiling, for data locality
» Vectorization

Our approach: form a tractable search space of possible loop
transformations
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for Per

csu

Running Example

Original code

Example (tmp =A.B, D = tmp.C)

for (il = 0; 11 < N; ++il)
for (31 = 0; J1 < N; ++31) {

R: tmp[il] [j1] = 0O;
for (k1 = 0; k1 < N; ++k1)
Sk tmp[il] [j1] += A[il][k1] * B[k1][jl];
} {R,S} fused, {T,U} fused

for (i2 = 0; i2 < N; ++i2)
for (j2 j2 < N; ++32) {
[

= 0;
g D[i2][32] = O;
for (k2 = 0; k2 < N; ++k2)
g D[i2] [j2] += tmp[i2] [k2] * C[k2][j2];
}
v

| Original  Max. fusion  Max. dist  Balanced
4x Xeon 7450/ 1CC 11 1x
4 x Opteron 8380/ I1CC 11 1x
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Running Example

Cost model: maximal fusion, minimal synchronization
[Bondhugula et al., PLDI'08]

Example (tmp =A.B, D = tmp.C)

parfor (c0 = 0; c0 < N; cO0++) {
for (cl = 0; cl < N; cl++) {
R: tmp[c0] [c1]=0;
Ts D[c0] [c1]=0;
for (c6 = 0; c6 < N; cb6++)
$3 tmp[cO0] [cl] += A[c0][c6] * B[c6][cl];
parfor (c6 = 0;c6 <= cl; c6++)
U: D[c0][c6] += tmp[cO][cl-c6] * C[cl—-c6][cb];
} {R,S,T,U} fused
for (cl = N; cl < 2*N - 1; cl++)
parfor (c6 = cl-N+1l; c6 < N; c6+t)
U: D[c0][c6] += tmp[cO][1-c6] * Clecl-c6][chb];
}
v

| Original  Max. fusion Max. dist  Balanced
4x Xeon 7450 /1CC 11 1x 2.4x
4x Opteron 8380/ ICC 11 1x 2.2%

csu
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Running Example

Maximal distribution: best for Intel Xeon 7450
Poor data reuse, best vectorization

Example (tmp =A.B, D = tmp.C)

parfor (il = 0; il < N; ++il)
parfor (jl = 0; jl < N; ++j1)

R: tmp[il] [j1] = O;
parfor (il = 0; il < N; ++il)
for (k1 = 0; k1 < N; ++k1)
parfor (jl1 = 0; j1 < N; ++31)
83 tmp[i1] [j1] += A[il][k1] * B[k1l][j1];
{R} and {S} and {T} and {U} distributed
parfor (i2 +4+12)

parfor (j2

0; i2 < N;

0; j2 < N; ++j2)
T: D[i2][42] = 0;
parfor (i2 = 0; 12 < N; ++i2)
for (k2 = 0; k2 < N; ++k2)
parfor (j2 = 0; j2 < N; ++32)
U: D[i2][j2] += tmp[i2][k2] * C[k2][]j2];
i
| Original  Max. fusion  Max. dist  Balanced
4x Xeon 7450/ 1CC 11 1x 2.4x 3.9x
4 x Opteron 8380/ ICC 11 1x 2.2x 6.1x
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Running Example

Balanced distribution/fusion: best for AMD Opteron 8380
Poor data reuse, best vectorization

Example (tmp =A.B, D = tmp.C)

parfor (cl = 0; cl < N; cl++)
parfor (c2 = 0; c2 < N; c2+t)
R: Clel][c2] = 0;
parfor (cl = 0; cl < N; cl++)
for (c3 = 0; c3 < N;c3++) {
g E[cl] [c3] = 0;
parfor (c2 = 0; c2 < N;c2++)
S: Clcl]l[e2] += A[cl][c3] * Blc3][c2];

}

parfor (cl

0; cl < N; cl++)

{S,T} fused, {R} and {U} distributed

for (c3 = 6 c3 < N; c3++)
parfor (c2 = 0; c2 < N; c2++)
U: E[cl] [c2] += C[cl][e3] * D[c3][ec2]; y
| Original  Max. fusion  Max. dist  Balanced
4x Xeon 7450/ 1CC 11 1x 2.4x 3.9% 3.1x
4 x Opteron 8380/ ICC 11 1x 2.2% 6.1x 8.3
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Running Example

Example (tmp =A.B, D = tmp.C)

parfor (cl
parfor (c

R: Clecl] [c
parfor (cl
lc

r

0; cl < N; cl++4)
= 0; c2 < N; c2++)
1 =0;
0; cl < N; cl++4)
c3 < Njc3++) {
= 0;

for (c3 8

Ty E[cl] ]
parfo c2 = 0; c2 < N;c2++)

S: Clcl] ] += A[cl][c3] * B[c3][c2];

} {S,T} fused, {R} and {U} distributed

parfor (cl 0; cl < N; cl++)

for (c3 c3 < N; c3++)
2 =0; c2 < N; c2++)
c2] += Clcllle3] * D[c3][c2];

c2
2
0;
3
(
[

\ Original  Max. fusion  Max. dist Balanced
4x Xeon 7450/ 1CC 11 1x 2.4x 3.9x 3.1x
4x Opteron 8380/ ICC 11 1x 2.2% 6.1x 8.3x

The best fusion/distribution choice drives the quality of the optimization
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Loop Structures

Possible grouping + ordering of statements

> {{R}, {S}, {T}, {Ul}; {{R}, {Sh {U} (T} ..

> {{R,S} {T}, {Ulk {{R}, {S}, {T.U}}; {{R}, {T.U}, {S}} {{T.U}, {R}, {S}};...
> {{R.S.T} {Ulk {{R}, {S,T.UlL {{S}, {R,T.UL....

> {{R.S,T.Ul};

Number of possibilities: >> n! (number of total preorders)
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Loop Structures

Removing non-semantics preserving ones

> {{R}, {S}, {T}, {U}}; (R}, {S} {UL {TH; ...

> {{R.S}, {T}, {U}k {{R}, {S}, {T.U}}; {{R}, {T.U}, {S}}; {{T.U}, (R}, {S}};...
> {{R.S,T} {Ulk {{R}. {S,T.Ul} {{S}, {R.T.U}:...

> {{R,S,T,U}}

Number of possibilities: 1 to 200 for our test suite
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Loop Structures

For each partitioning, many possible loop structures

> {{R}, {S}, {T}, {U}}
» For S:{i,j,k}; {i, k. j}; {k, i, j}; (k. j, i}; ...
» However, only {i,k,j} has:

> outer-parallel loop
» inner-parallel loop
> lowest striding access (efficient vectorization)
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Possible Loop Structures for 2mm

> 4 statements, 75 possible partitionings
» 10 loops, up to 10! possible loop structures for a given partitioning

> Two steps:

» Remove all partitionings which breaks the semantics: from 75 to 12
> Use static cost models to select the loop structure for a partitioning: from
dltol

» Final search space: 12 possibilites
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Contributions and Overview of the Approach

» Empirical search on possible fusion/distribution schemes
» Each structure drives the success of other optimizations

» Parallelization
> Tiling
> Vectorization

» Use static cost models to compute a complex loop transformation for a
specific fusion/distribution scheme

> lteratively test the different versions, retain the best
> Best performing loop structure is found
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Search Space of Loop Structures

» Partition the set of statements into classes:
> This is deciding loop fusion / distribution
> Statements in the same class will share at least one common loop in the
target code
> Classes are ordered, to reflect code motion

> Locally on each partition, apply model-driven optimizations

» |everage the polyhedral framework:

> Build the smallest yet most expressive space of possible partitionings
[Pouchet et al., POPL11]

> Consider semantics-preserving partitionings only: orders of magnitude
smaller space
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Summary of the Optimization Process

description #loops #stmts #refs #deps #part. #valid Variability Pb. Size
2mm Linear algebra (BLAS3) 6 4 8 12 75 12 v 1024x1024
3mm Linear algebra (BLAS3) 9 6 12 19 4683 128 v 1024x1024
adi Stencil (2D) 11 8 36 188 545835 1 1024x1024
atax Linear algebra (BLAS2) 4 4 10 12 75 16 v 8000x8000
bicg Linear algebra (BLAS2) 3 4 10 10 75 26 v 8000x8000
correl Correlation (PCA: StatLib) 5 6 12 14 4683 176 v 500x500
covar Covariance (PCA: StatLib) 7 7 13 26 47293 96 v 500x500
doitgen Linear algebra 5 3 7 8 13 4 128x128x128
gemm Linear algebra (BLAS3) 3 2 6 6 3 2 1024x1024
gemver Linear algebra (BLAS2) 7 4 19 13 75 8 v 8000x8000
gesummy Linear algebra (BLAS2) 2 5 15 17 541 44 v 8000x8000
i Matrix nor { 6 7 17 34 47293 1 512x512
jacobi-2d Stencil (2D) 5 2 8 14 3 1 20x1024x1024
Iu Matrix 4 2 7 10 3 1 1024x1024
ludemp Solver 9 15 40 188 10] 2 20 v 1024x1024
seidel Stencil (2D) 3 1 10 27 1 1 20x1024x1024

Table: Summary of the optimization process
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Experimental Setup

We compare three schemes:
» maxfuse: static cost model for fusion (maximal fusion)

» smartfuse: static cost model for fusion (fuse only if data reuse)

> Iterative: iterative compilation, output the best result
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Performance Results - Intel Xeon 7450 - ICC 11

Performance Improvement - Intel Xeon 7450 (24 threads)
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Performance Results - AMD Opteron 8380 - ICC 11

Performance Improvement - AMD Opteron 8380 (16 threads)
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csu

Performance Results - Intel Atom 330 - GCC 4.3

Performance Improvement - Intel Atom 230 (2 threads)
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Assessment from Experimental Results

@ Empirical tuning required for 9 out of 16 benchmarks
@ Strong performance improvements: 2.5x - 3x on average

@ Portability achieved:

> Automatically adapt to the program and target architecture
» No assumption made about the target
> Exhaustive search finds the optimal structure (1-176 variants)

@ Substantial improvements over state-of-the-art (up to 2x)
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