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Transformation Frameworks
Motivation

– Intermediate representations for computations
– Transformation specifications and code generation after transformation
– Composition of transformations
– Data dependence representation and thus legality checks for composed 

transformations
Covering in Today’s Tutorial

– Polyhedral Model for representing computations with affine loop bounds 
and array accesses

– Polyhedral compilation for sparse-immutable computations  
– Sparse Polyhedral Framework (SPF) for sparse matrix/tensor 

computations with indirect array accesses
– PolyRec Framework for recursive irregular computations
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Polyhedral model: Loop transformations improve performance!
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Another Example: FDTD

Michelle Strout, 
University of Arizona
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Doing such transformations by hand is NOT FEASIBLE!

Michelle Strout, 
University of Arizona
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RoadMap for Tutorial: Math for Irregular Codes
Concepts

– Polyhedral model review
– Sparse computations as union of dense computations
– Sparse Polyhedral Framework (SPF)
– Polyrec

Hands On Tutorial Goals
– Specify affine transformations in ISCC
– Handle irregular loop bounds in ISCC
– Demo of data dependence analysis for SPF
– Demo polyrec
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Original code
do i = 1,2

do j = 1,3
S1: A(i,j) = A(i-1,j+1)+1

enddo
enddo

Represent the iteration space
–As an intersection of inequalities
–The iteration space is the integer tuples within the intersection

Bounds:

7

Representing Loops with Math (Matrices)

i
j
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Affine Transformations
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Program Transformation: Polyhedral School

Affine Transformations

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.
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(a) original polyhedron (b) transformation function (c) target polyhedron
A~x+~a �~0 ~y = T~x (AT�1)~y+~a �~0

do i = 1, 2

do j = 1, 3

S(i,j)

do i’ = 1, 3

do j’ = 1, 2

S(i=j’,j=i’)

UCLA 40



Goal: Learn How to Use ISCC
ISCC

– Calculator for ISL (Integer Set Library)
– http://compsys-tools.ens-lyon.fr/iscc/
– Author: Sven Verdoolaege
– See Barvinok documentation online for a user manual
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Specifying Example Loop in ISCC

Original Loop in C

Create a macro for statement in C

Iterations in loops described as a Set in ISCC
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I := [N] -> {S[i,j] : 0<=i<N and 0<=j<i};

for (i=0; i<N; i++)
for (j=0; j<i; j++)
A[i][j] = exp(i+j);

#define S(i,j) A[i][j] = exp((i)+(j))
for (i=0; i<N; i++)
for (j=0; j<i; j++)
S(i,j);



ISCC: Loop Interchange Transformation
Generate the loop bounds for the Set I

Generate after applying Loop Interchange
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// Input
I := [N] -> {S[i,j] : 0<=i<N and 0<=j<i};
codegen I;
// Output
for (int c0 = 1; c0 < N; c0 += 1)
for (int c1 = 0; c1 < c0; c1 += 1)
S(c0, c1);

// Input: Transformation function
T := {S[i,j] -> [j,i]};
codegen (T*I);
// Output
for (int c0 = 0; c0 < N - 1; c0 += 1)
for (int c1 = c0 + 1; c1 < N; c1 += 1)
S(c1, c0);



ISCC Determines Old Iterators as Function of New Iterators
Original Loop Nests and Transformation

Resulting code with old iterators as function of new iterators
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// Input
Domain := [N] -> {S1[0,j,0] : 1<=j<N;                      

S2[1,k,0] : 0<=k<N-1;};

T_fusion := {S1[0,j,0]->[0,j,0];
S2[1,k,0]->[0,k+1,1] };

codegen (T_fusion*Domain);

// Output
for (int c1 = 1; c1 < N; c1 += 1) {  
S1(0, c1, 0);
S2(1, c1 - 1, 0);

}
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Tiling

A loop transformation that ...
– groups iteration points into tiles that are 

executed atomically
– can improve spatial and temporal data 

locality
– can expose larger granularities of 

parallelism
i

j

do ii = 1,6, by 2
do jj = 1, 5, by 2
do i = ii, ii+2-1
do j = jj, min(jj+2-1,5)
A(i,j) = ...
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Specifying Tiling

Rectangular tiling
– tile size vector

– tile offset,

Possible Transformation Mappings
– creating a tile space

– keeping tile iterators in original iteration space

i
j



Using ISCC to do code generation for tiling

Iteration space: S := { s[i,j] : 1<=i<=6 && 1<=j<=5 };
Tiling specification
T :={s[i,j]->[ti,tj,i,j]: ti=(i-1)/2&&tj=(j-1)/2};

codegen (T*S);  // doesn’t work in iscc

Getting rid of integer divison
ti=(i-1)/2 becomes
0<=ri<2 && (i-1)=2*ti+ri

tj=(j-1)/2 becomes
0<=rj<2 && (j-1)=2*tj+rj

T :={s[i,j]->[ti,tj,i,j]: exists ri,rj: 

0<=ri<2 && i-1=ti*2+ri 

&& 0<=rj<2 && j-1=tj*2+rj}; // works!!
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Polyhedral Model
Some History

– [Banerjee90] Uptal Banerjee, “Unimodular transformations of double 
loops,” In Advances in Languages and Compilers for Parallel Computing, 
1990.

– [Wolf & Lam 91] Wolf and Lam, “A Data Locality Optimizing 
Algorithm,” In Programming Languages Design and Implementation, 
1991.

– [Kelly and Pugh 95] Kelly and Pugh, “A unifying framework for iteration 
reordering transformations,” In IEEE First International Conference on 
Algorithms and Architectures for Parallel Processing (ICAPP)

– [Feautrier 96] Paul Feautrier, “Automatic Parallelization in the Polytope 
Model,” In The Data Parallel Programming Model.
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Polyhedral Model
Some key components

– Representing loops as sets
– Representing data dependences as dependence vectors
– Representing transformations as functions
– Applying transformations to generate transformed code
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