Tutorial: Extending Loop Transformation Frameworks to Irregular Applications (aka Math for Irregular Codes)

Michelle Mills Strout (University of Arizona),
Louis-Noel Pouchet (Colorado State University), Milind Kulkarni (Purdue University)

Transformation Frameworks

Motivation

- Intermediate representations for computations
- Transformation specifications and code generation after transformation
- Composition of transformations
- Data dependence representation and thus legality checks for composed transformations
Covering in Today's Tutorial
- Polyhedral Model for representing computations with affine loop bounds and array accesses
- Polyhedral compilation for sparse-immutable computations
- Sparse Polyhedral Framework (SPF) for sparse matrix/tensor computations with indirect array accesses
- PolyRec Framework for recursive irregular computations

Polyhedral model: Loop transformations improve performance!

Example (dgemm)

```
    /* C := alpha*A*B + beta*C */
    for (i = 0; i < ni; i++)
    for (j \(=0\); j < nj; j++)
S1: C[i][j] *= beta;
    for (i \(=0\); \(i<n i ; i++\) )
    for (j = 0; j < nj; j++)
        for ( \(k=0 ; k<n k ;++k)\)
S2: C[i][j] += alpha * A[i][k] * B[k][j];
```

- Loop transformation: permute(i,k,S2)

Execution time (in s) on this laptop, GCC 4.2, ni=nj=nk=512

version	-O 0	-O 1	-O 2	$-\mathrm{O} 3-\mathrm{vec}$
original	1.81	0.78	0.78	0.78
permute	1.52	0.35	0.35	0.20

http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Optimize-Options.html

Another Example: FDTD

Example (fdtd-2d)

```
    for(t = 0; t < tmax; t++) {
    for (j = 0; j < ny; j++)
        ey[0][j] = _edge_[t];
    for (i = 1; i < nx; i++)
            for (j = 0; j < ny; j++)
            ey[i][j] = ey[i][j] - 0.5*(hz[i][j]-hz[i-1][j]);
    for (i = 0; i < nx; i++)
            for (j = 1; j < ny; j++)
            ex[i][j] = ex[i][j] - 0.5*(hz[i][j]-hz[i][j-1]);
    for (i = 0; i < nx - 1; i++)
            for (j = 0; j < ny - 1; j++)
            hz[i][j] = hz[i][j] - 0.7* (ex[i][j+1] - ex[i][j] +
                ey[i+1][j]-ey[i][j]);
```

\}

- Loop transformation: polyhedralOpt(fdtd-2d)

Execution time (in s) on this laptop, GCC 4.2, 64x1024x1024

version	-O	-O 1	-O 2	$-\mathrm{O} 3-\mathrm{vec}$
original	2.59	1.62	1.54	1.54
polyhedralOpt	2.05	0.41	0.41	0.41

Doing such transformations by hand is NOT FEASIBLE!

Example (fdtd-2d tiled)

```
for (c0 = 0; c0 <= (( (ny + 2 * tmax + -3) * 32< 0? ((32< 0?-((-(ny + 2 * tmax + -3) + 32 + 1) / 32) : -((- (ny + 2 *
tmax + -3) + 32-1) ( 32))) : (ny + 2 * tmax + -3) / 32)); ++c0) {
    #pragma omp parallel for private(c3, c4, c2, c5)
    for (c1 = (((c0 * 2 < 0?-(-c0 / 2) : ((2<0? (-c0 + -2 - 1) / -2 : (c0 + 2 - 1) / 2)))) > (((32 * c0 + -tmax + 1) *
32< 0?-(-(32 * c0 + -tmax + 1) / 32) : ((32< 0? (-(32 * c0 + -tmax + 1) + - 32 - 1) / - 32 : (32 * c0 + -tmax + 1 + 32
- 1) / 32))))?((c0 * 2 < 0?-(-c0 / 2) : ((2 < 0?(-c0 + -2 - 1) / -2 : (c0 + 2 - 1) / 2)))) : (((32 * c0 + -tmax + 1) *
32<0?-(-(32 * c0 + -tmax + 1) / 32) : ( (32 < 0? (- (32 * c0 + -tmax + 1) + -32 - 1) / - 32 : ( 32 * c0 + -tmax + 1 + 32
- 1) / 32))))); c1 <= ((((()(ny + tmax + -2) * 32< 0?((32< 0?-((-(ny + tmax + -2) + 32 + 1) / 32) : - ((-(ny + tmax +
-2) + 32-1) / 32))):(ny + tmax + -2) / 32)) < (((32 * c0 + ny + 30) * 64<0?((64<0?-((-(32 * c0 + ny + 30) + 64
+ 1) / 64) : -((-(32 * c0 + ny + 30) + 64-1) / 64))) : (32 * c0 + ny + 30) / 64)) ?(((ny + tmax + -2) * 32 < 0?((32 <
0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax + -2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) : (((32 * c0 +
ny + 30) * 64<0?((64<0?-((-(32* c0 + ny + 30) + 64 + 1) / 64) : -((-(32 * c0 + ny + 30) + 64 - 1) / 64))) : (32 *
c0 + ny + 30) / 64)))) < c0?(((((ny + tmax + -2) * 32< 0?((32< 0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax
+ -2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) < (((32 * c0 + ny + 30) * 64 < 0? ((64 < 0?-((-(32 * c0 + ny + 30) + 64
+ 1) / 64): -((-(32* c0 + ny + 30) + 64-1)/ 64))): (32* c0 + ny + 30)/ 64)) ?(((ny + tmax + -2) * 32< < ?((32<
0?-((-(ny + tmax + -2) + 32 + 1) / 32) : -((-(ny + tmax + -2) + 32 - 1) / 32))) : (ny + tmax + -2) / 32)) : (((32 * c0 +
ny + 30) * 64<0?((64<0?-((-(32*c0 + ny + 30) + 64 + 1)/ 64): -((-(32*c0 + ny + 30) + 64-1) / 64))) : (32 *
c0 + ny + 30) / 64)))) : c0)); ++c1) {
    for (c2 = c0 + -c1; c2 <= (()((tmax + nx + -2) * 32< 0? ((32 < 0?-((-(tmax + nx + -2) + 32 + 1) / 32) : -((-(tmax +
nx + -2) + 32-1) / 32))) : (tmax + nx + -2)/ 32))< (((32* c0 + - 32 * c1 + nx + 30) * 32< < ? ((32< < ?-((-(32 * c0 +
-32 * c1 + nx + 30) + 32 + 1) / 32) : -((-(32 * c0 + -32 * c1 + nx + 30) + 32 - 1) / 32))) : (32 * c0 + - 32 * c1 + nx +
30) / 32))?(((tmax + nx + -2) * 32<0?((32<0?-((-(tmax + nx + -2) + 32 + 1)/ 32) : - ((-(tmax + nx + -2) + 32 - 1) /
32))) : (tmax + nx + -2) / 32)) : (((32 * c0 + -32 * c1 + nx + 30) * 32< 0?((32<0?-((-(32 * c0 + - 32 * c1 + nx + 30)
+ 32 + 1) / 32) : -((-(32 * c0 + -32 * c1 + nx + 30) + 32 - 1) / 32))) : (32 * c0 + - 32 * c1 + nx + 30) / 32)))); ++c2)
    if (c0 == 2 * c1 && c0 == 2 * c2) {
        for (c3 = 16 * c0; c3 <= ((tmax + -1 < 16 * c0 + 30?tmax + -1 : 16 * c0 + 30)); ++c3)
            if (c0 % 2 == 0)
                (ey[0])[0] = (_edge_[c3]);
            (200 more lines!)
```

Performance gain: 2-6× on modern multicore platforms

RoadMap for Tutorial: Math for Irregular Codes

Concepts

- Polyhedral model review
- Sparse computations as union of dense computations
- Sparse Polyhedral Framework (SPF)
- Polyrec

Hands On Tutorial Goals

- Specify affine transformations in ISCC
- Handle irregular loop bounds in ISCC
- Demo of data dependence analysis for SPF
- Demo polyrec

Representing Loops with Math (Matrices)

Original code

```
do i = 1,2
    do j = 1,3
        S1: A(i,j) = A(i-1,j+1)+1
    enddo
```

enddo

Represent the iteration space
-As an intersection of inequalities
-The iteration space is the integer tuples within the intersection

Bounds:

$$
\begin{aligned}
& 1 \leq i \leq 2 \\
& 1 \leq j \leq 3
\end{aligned}
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
i \\
j
\end{array}\right] \geq\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-3
\end{array}\right]
$$

Affine Transformations

Interchange Transformation
The transformation matrix is the identity with a permutation of two rows.

$\left[\begin{array}{rr}1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]\binom{i}{j}+\left(\begin{array}{r}-1 \\ 2 \\ -1 \\ 3\end{array}\right) \geq \overrightarrow{0}$
(a) original polyhedron
$A \vec{x}+\vec{a} \geq \overrightarrow{0}$
$\binom{i^{\prime}}{j^{\prime}}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\binom{i}{j}$
(b) transformation function
$\vec{y}=T \vec{x}$

$$
\left[\begin{array}{rr}
0 & 1 \\
0 & -1 \\
1 & 0 \\
-1 & 0
\end{array}\right]\binom{i^{\prime}}{j^{\prime}}+\left(\begin{array}{r}
-1 \\
2 \\
-1 \\
3
\end{array}\right) \geq \overrightarrow{0}
$$

(c) target polyhedron $\left(A T^{-1}\right) \vec{y}+\vec{a} \geq \overrightarrow{0}$

```
do i = 1, 2
do j = 1, 3
```

do $i^{\prime}=1,3$
do $j^{\prime}=1,2$
S(i=j', j=i')

Goal: Learn How to Use ISCC

ISCC

- Calculator for ISL (Integer Set Library)
- http://compsys-tools.ens-lyon.fr/iscc/
- Author: Sven Verdoolaege
- See Barvinok documentation online for a user manual

Output format
is 1

Specifying Example Loop in ISCC

Original Loop in C

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<i ; j++) \\
& A[i][j]=\exp (i+j) ;
\end{aligned}
$$

Create a macro for statement in \mathbf{C}

```
#define S(i,j) A[i][j] = exp((i)+(j))
for (i=0; i<N; i++)
    for (j=0; j<i; j++)
    S(i,j);
```

Iterations in loops described as a Set in ISCC

$$
I:=[N]->\{S[i, j]: 0<=i<N \text { and } 0<=j<i\} ;
$$

ISCC: Loop Interchange Transformation

Generate the loop bounds for the Set I
// Input
I := [N] -> $\{S[i, j]: 0<=i<N$ and $0<=j<i\} ;$
codegen I;
// Output
for (int $c 0=1 ; c 0<N ; c 0+=1$) for (int c1 $=0 ; c 1<c 0 ; c 1+=1$) S(c0, c1);

Generate after applying Loop Interchange
// Input: Transformation function
T : = \{S[i,j] -> [j,i]\};
codegen (T*I);
// Output
for (int $c 0=0 ; c 0<N-1 ; c 0+=1$) for (int $c 1=c 0+1 ; c 1<N ; c 1+=1$) S(c1, c0);

ISCC Determines Old Iterators as Function of New Iterators

Original Loop Nests and Transformation

// Input

$$
\begin{aligned}
& \text { Domain := [N] -> \{S1[0,j,0] : 1<=j<N; } \\
& S 2[1, k, 0]: 0<=k<N-1 ;\} ; \\
& \text { T_fusion := }\{S 1[0, j, 0]->[0, j, 0] \text {; } \\
& \text { S2[1,k,0]->[0,k+1,1] \}; } \\
& \text { codegen (T_fusion*Domain); }
\end{aligned}
$$

Resulting code with old iterators as function of new iterators

```
// Output
for (int c1 = 1; c1 < N; c1 += 1) {
    S1(0, c1, 0);
    S2(1, c1 - 1, 0);
}
```


Tiling

A loop transformation that ...

- groups iteration points into tiles that are executed atomically
- can improve spatial and temporal data locality
- can expose larger granularities of parallelism


```
do ii \(=1,6\), by 2
    do jj = 1, 5, by 2
    do \(i=i i, ~ i i+2-1\)
        do \(j=j j, \min (j j+2-1,5)\)
        \(A(i, j)=\ldots\)
```


Specifying Tiling

Rectangular tiling

- tile size vector

$$
\left(s_{1}, s_{2}, \ldots, s_{d}\right)
$$

- tile offset, $\quad\left(o_{1}, o_{2}, \ldots, o_{d}\right)$

Possible Transformation Mappings

- creating a tile space
$\left\{[i, j] \rightarrow[t i, t j, i, j] \quad \mid \quad t i=\right.$ floor $\left(\left(i-o_{1}\right) / s_{1}\right)$

$$
\left.\wedge t j=\text { floor }\left(\left(j-o_{2}\right) / s_{2}\right)\right\}
$$

- keeping tile iterators in original iteration space

$$
\begin{aligned}
\{[i, j] \rightarrow[i i, j j, i, j] \quad \mid \quad & i i=s_{1} \text { floor }\left(\left(i-o_{1}\right) / s_{1}\right)+o_{1} \\
& \left.\wedge j j=s_{2} \text { floor }\left(\left(j-o_{2}\right) / s_{2}\right)+o_{2}\right\}
\end{aligned}
$$

Using ISCC to do code generation for tiling

Iteration space: $S:=\{s[i, j]: 1<=i<=6 \& \& \quad 1<=j<=5\} ;$

Tiling specification

$T:=\{s[i, j]->[t i, t j, i, j]: t i=(i-1) / 2 \& \& t j=(j-1) / 2\} ;$
codegen (T*S); // doesn't work in iscc

Getting rid of integer divison
ti=(i-1)/2 becomes
$0<=r i<2$ \&\& (i-1) $=2 *$ ti+ri
tj=(j-1)/2 becomes
$0<=r j<2 \quad \& \& \quad(j-1)=2 * t j+r j$
$T:=\{s[i, j]->[t i, t j, i, j]:$ exists ri,rj:
$0<=r i<2$ \&\& $i-1=t i * 2+r i$
\&\& $0<=r j<2$ \&\& j-1=tj*2+rj\}; // works!!

Polyhedral Model

Some History

- [Banerjee90] Uptal Banerjee, "Unimodular transformations of double loops," In Advances in Languages and Compilers for Parallel Computing, 1990.
- [Wolf \& Lam 91] Wolf and Lam, "A Data Locality Optimizing Algorithm," In Programming Languages Design and Implementation, 1991.
- [Kelly and Pugh 95] Kelly and Pugh, "A unifying framework for iteration reordering transformations," In IEEE First International Conference on Algorithms and Architectures for Parallel Processing (ICAPP)
- [Feautrier 96] Paul Feautrier, "Automatic Parallelization in the Polytope Model," In The Data Parallel Programming Model.

Polyhedral Model

Some key components

- Representing loops as sets
- Representing data dependences as dependence vectors
- Representing transformations as functions
- Applying transformations to generate transformed code

